Inorganic Chemicals Industry ›› 2025, Vol. 57 ›› Issue (7): 1-13.doi: 10.19964/j.issn.1006-4990.2024-0451
• Reviews and Special Topics • Next Articles
LI Changwen1,2(), ZHAN Honglong1, QIAO Yingjun1, SHI Chenglong2(
), QIAN Zhiqiang1,2(
)
Received:
2024-08-14
Online:
2025-07-10
Published:
2024-10-21
Contact:
SHI Chenglong, QIAN Zhiqiang
E-mail:lichangwen@163.com;shiclong@qhmu.edu.cn;qianzq@isl.ac.cn
CLC Number:
LI Changwen, ZHAN Honglong, QIAO Yingjun, SHI Chenglong, QIAN Zhiqiang. Research progress of electrochemical extraction of lithium from salt lake brine[J]. Inorganic Chemicals Industry, 2025, 57(7): 1-13.
Table 1
Electrode materials and main indexes for electrochemical lithium extraction"
电极材料 | 吸附容量/ (mg·g-1) | 分离因子 | 容量保留 率/循环 次数 | 能耗/ (W·h·mol-1) |
---|---|---|---|---|
LiMn2O4[ | 4.85 | — | 70%/30 | — |
B-LMO[ | 20.60 | — | 87%/30 | 15.2 |
H1.6Mn1.6O4[ | 34.40 | — | 86%/5 | — |
Cr-LiMn2O4[ | 21.85 | — | 99%/100 | 2.16 |
AlZr-LMO[ | 49.92 | — | 58%/30 | — |
ZnO-rLMO[ | 13.12 | — | — | — |
PPy/Al2O3/LMO[ | 12.84 | — | 92%/30 | — |
PDA-C@HMO[ | 65.60 | — | 90%/10 | — |
PAA-CP-LMO[ | 24.70 | — | 84%/30 | — |
GO/La-LMO[ | 9.23 | 126(Li/Mg) | 83%/100 | — |
LiNi0.05Mn1.95O4[ | 25.87 | — | 100%/5 | 13.42 |
LiFePO4[ | 14.62 | 210.5(Li/Na) | 60%/13 | 0.11 |
LiFePO4[ | 14.50 | 188.68(Li/Na) | 80%/5 | — |
Li0.3FePO4[ | 25.00 | 138.00(Li/Na) | 90%/100 | — |
PEG/LiFePO4[ | 35.20 | — | 91%/60 | — |
LFP/rGO[ | 36.78 | — | 90%/8 | — |
PEG/LiFePO4[ | 27.30 | — | 86%/100 | — |
Li1-x Ni1/3Co1/3Mn1/3O2[ | 10.83 | 32.18(Li/Na) | — | 2.60 |
LiNi0.025Co0.025Mn1.95O2[ | 12.91 | — | 98%/50 | 2.12 |
rGO/LiNi0.6Co0.2Mn0.2O2[ | 13.84 | — | 81%/30 | 1.40 |
Table 2
Technical characteristics and advantages and disadvantages of several major electrochemical lithium extraction system processes"
系统类型 | 技术特点 | 优势 | 劣势 |
---|---|---|---|
电容去离子(CDI) | 通过电极吸附溶液中的Li+,改变电压实现Li+的吸附和释放 | 能耗低、操作简单、环境友好;适用于低浓度锂盐溶液 | 对高浓度的锂盐溶液吸附效率低;受到电极材料和寿命限制 |
电渗析(ED) | 通过离子交换膜在电场作用下分离Li+ | 可连续操作和规模化生产;较高的锂回收率和纯度 | 膜的污染和寿命问题;较高的能耗和运营成本 |
离子泵 | 通过电场直接高精度控制Li+的迁移,适用于高纯度锂产品的应用 | 对Li+选择性高;提锂纯度高 | 技术复杂;成本高 |
电化学开关离子交换(ESIX) | 结合了电化学和离子交换的优点,利用电场控制离子交换材料的吸附和释放Li+ | 可实现高效Li+回收,减少化学试剂的使用 | 技术相对新颖,需进一步研究和优化 |
摇椅式系统 | 通过摇动增强电极和溶液间的物质传递,实现小规模锂提取 | 强化处理效率、适合动态操作;可应对复杂的锂盐溶液成分 | 设备成本和维护要求高;摇动机制可能影响设备稳定性 |
[1] | GUAN Peiyuan, ZHOU Lu, YU Zhenlu,et al.Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries[J].Journal of Energy Chemistry,2020,43:220-235. |
[2] | 陈海霞,严红,孙云龙,等.锂资源提取技术研究进展[J].无机盐工业,2024,56(1):9-22. |
CHEN Haixia, YAN Hong, SUN Yunlong,et al.Research progress of lithium resource extraction technology[J].Inorganic Chemicals Industry,2024,56(1):9-22. | |
[3] | 马珍.盐湖锂资源高效分离提取技术研究进展[J].无机盐工业,2022,54(10):22-29. |
MA Zhen.Research progress on efficient separation and extraction technology of lithium resources in salt lakes[J].Inorganic Chemicals Industry,2022,54(10):22-29. | |
[4] | CHEN Linlin, CHAO Yanhong, LI Xiaowei,et al.Engineering a tandem leaching system for the highly selective recycling of valuable metals from spent Li-ion batteries[J].Green Chemistry,2021,23(5):2177-2184. |
[5] | 蒋晨啸,陈秉伦,张东钰,等.我国盐湖锂资源分离提取进展[J].化工学报,2022,73(2):481-503. |
JIANG Chenxiao, CHEN Binglun, ZHANG Dongyu,et al.Progress in isolating lithium resources from China salt lake brine[J].CIESC Journal,2022,73(2):481-503. | |
[6] | 乜贞,伍倩,丁涛,等.中国盐湖卤水提锂产业化技术研究进展[J].无机盐工业,2022,54(10):1-12. |
NIE Zhen, WU Qian, DING Tao,et al.Research progress on industrialization technology of lithium extraction from salt lake brine in China[J].Inorganic Chemicals Industry,2022,54(10):1-12. | |
[7] | 朱瑞松,曹靖,刘陶然,等.全球非常规卤水的提锂技术及产业化研究进展[J].无机盐工业,2023,55(11):1-11. |
ZHU Ruisong, CAO Jing, LIU Taoran,et al.Research progress of lithium extraction technology and industrialization of unconventional brines in global[J].Inorganic Chemicals Industry,2023,55(11):1-11. | |
[8] | ZHANG Licheng, LI Jinfeng, LIU Ruirui,et al.Recovery of lithium from salt lake brine with high Na/Li ratio using solvent extraction[J].Journal of Molecular Liquids,2022,362:119667. |
[9] | LUO Qinglong, DONG Mingzhe, LI Quan,et al.Improve the durability of lithium adsorbent Li/Al-LDHs by Fe3+ substitution and nanocomposite of FeOOH[J].Minerals Engineering,2022,185:107717. |
[10] | LU Qichen, LIU Peng, ZHOU Tianyi,et al.Recent progress on electro-sorption technology for lithium recovery from aqueous sources[J].Nano Research,2024,17(4):2563-2573. |
[11] | 郭志远,纪志永,陈华艳,等.电化学提锂技术中电极材料和电极体系的研究进展[J].化工进展,2020,39(6):2294-2303. |
GUO Zhiyuan, JI Zhiyong, CHEN Huayan,et al.Progress of electrode materials and electrode systems in electrochemical lithium extraction process[J].Chemical Industry and Engineering Progress,2020,39(6):2294-2303. | |
[12] | 吴静,任秀莲,魏琦峰.盐湖卤水中锂的分离提取研究进展[J].无机盐工业,2020,52(12):1-6. |
WU Jing, REN Xiulian, WEI Qifeng.Research progress on separation and extraction of lithium from salt-lake brine[J].Inorganic Chemicals Industry,2020,52(12):1-6. | |
[13] | KANOH H,OOI K, MIYAI Y,et al.Selective electroinsertion of lithium ions into a Pt/λ-MnO2 electrode in the aqueous phase[J].Langmuir,1991,7(9):1841-1842. |
[14] | 王晓丽,杨文胜.电化学提锂体系及其电极材料的研究进展[J].化工学报,2021,72(6):2957-2971. |
WANG Xiaoli, YANG Wensheng.Research progress of electrochemical lithium extraction systems and electrode materials[J].CIESC Journal,2021,72(6):2957-2971. | |
[15] | 陈颖,乔英钧,钱志强,等.电化学吸附提锂中Li+传输机制概述[J].盐湖研究,2023,31(2):81-90. |
CHEN Ying, QIAO Yingjun, QIAN Zhiqiang,et al.Research progress on transport mechanism of lithium ions during electrochemical adsorption[J].Journal of Salt Lake Research,2023,31(2):81-90. | |
[16] | ZHAN Honglong, QIAO Yingjun, QIAN Zhiqiang,et al.Electrochemical behaviors of porous spherical spinel H1.6Mn1.6O4 with high Li+ adsorption capacity[J].Separation and Purification Tech- nology,2023,305:122485. |
[17] | TARASCON J M, ARMAND M.Issues and challenges facing rechargeable lithium batteries[J].Nature,2001,414(6861):359- 367. |
[18] | LV Xiao, ZHAO Xin, WU Shunqing,et al.A scheme for the generation of Fe-P networks to search for low-energy LiFePO4 crystal structures[J].J.Mater.Chem.A,2017,5:14611-14618. |
[19] | HU Jiangtao, HUANG Weiyuan, YANG Luyi,et al.Structure and performance of the LiFePO4 cathode material:From the bulk to the surface[J].Nanoscale,2020,12(28):15036-15044. |
[20] | LU Yihua, LI Jiagen, ZHAO Yu,et al.Lithium clustering during the lithiation/delithiation process in LiFePO4 olivine-structured materials[J].ACS Omega,2019,4(24):20612-20617. |
[21] | MOLENDA J, MOLENDA M.Composite cathode material for Li-ion batteries based on LiFePO4 system[M]//CUPPOLETTI J.Metal,ceramic and polymeric composites for various uses.Rijeka:InTech,2011. |
[22] | ZHAO Zhongwei, SI Xiufen, LIU Xuheng,et al.Li extraction from high Mg/Li ratio brine with LiFePO4/FePO4 as electrode materials[J].Hydrometallurgy,2013,133:75-83. |
[23] | PASTA M, BATTISTEL A, LA MANTIA F.Batteries for lithium recovery from brines[J].Energy & Environmental Science,2012,5(11):9487-9491. |
[24] | DU Miao, GUO Jinzhi, ZHENG Shuohang,et al.Direct reuse of LiFePO4 cathode materials from spent lithium-ion batteries:Extracting Li from brine[J].Chinese Chemical Letters,2023,34(6):107706. |
[25] | YAN Gangbin, KIM G, YUAN Renliang,et al.The role of solid solutions in iron phosphate-based electrodes for selective electrochemical lithium extraction[J].Nature Communications,2022,13:4579. |
[26] | LI Jinghui, FAN Wenlei, QIN Wei,et al.The regeneration process of FePO4 in electrochemical lithium extraction:The role of alkali ions[J].Chemical Engineering Journal,2024,493:152476. |
[27] | XIONG Jiachun, HE Lihua, ZHAO Zhongwei.Lithium extraction from high-sodium raw brine with Li0.3FePO4 electrode[J].Desalination,2022,535:115822. |
[28] | LIU Xuheng, CHEN Xingyu, ZHAO Zhongwei,et al.Effect of Na+ on Li extraction from brine using LiFePO4/FePO4 electrodes[J].Hydrometallurgy,2014,146:24-28. |
[29] | LIU Chong, LI Yanbin, LIN Dingchang,et al.Lithium extraction from seawater through pulsed electrochemical intercalation[J].Joule,2020,4(7):1459-1469. |
[30] | ZHU Weigang, XU Wenhua, LIU Dongfu,et al.Ionic transport kinetics of selective electrochemical lithium extraction from brin- es[J].Electrochimica Acta,2024,475:143519. |
[31] | YIN Ruixin, ZHU Weigang, ZHAO Zhongwei,et al.Lithium recovery from brine by PEG-modified porous LiFePO4/FePO4 electrode system[J].Separation and Purification Technology,2024,338:126375. |
[32] | ZHANG Junyan, SU Wenjing, YI Bin,et al.A new strategy for the preparation of highly stable and high-capacity electrodes for green electrochemical extraction of lithium[J].Chemical Engineering Journal,2023,454:140416. |
[33] | ZHANG Junyi, ZHOU Yuan, Chunxi HAI,et al.Enhancing lithium extraction efficiency from salt lake brines through three-dimensional conductive network-incorporated thick electrodes[J].Separation and Purification Technology,2024,334:126010. |
[34] | XU Wenhua, LIU Dongfu, LIU Xuheng,et al.Highly selective and efficient lithium extraction from brines by constructing a novel multiple-crack-porous LiFePO4/FePO4 electrode[J].Desalination,2023,546:116188. |
[35] | XIAO Weiji, XIN Chao, LI Sibai,et al.Insight into fast Li diffusion in Li-excess spinel lithium manganese oxide[J].Journal of Materials Chemistry A,2018,6(21):9893-9898. |
[36] | MISSONI L L, MARCHINI F, DEL POZO M,et al.A LiMn2O4-polypyrrole system for the extraction of LiCl from natural brine[J].Journal of the Electrochemical Society,2016,163(9):A1898-A1902. |
[37] | ZHAN Honglong, QIAO Yingjun, QIAN Zhiqiang,et al.Manganese-based spinel adsorbents for lithium recovery from aqueous solutions by electrochemical technique[J].Journal of Industrial and Engineering Chemistry,2022,114:142-150. |
[38] | ZHAN Honglong, QIAO Yingjun, QIAN Zhiqiang,et al.Engineering ion diffusion and electron transfer dual pathways within porous spherical H1.6Mn1.6O4 for highly efficient Li+ separation[J].Chemical Engineering Journal,2024,497:154859. |
[39] | ZHOU Guolang, LI Xiaowei, CHEN Linlin,et al.Construction of porous disc-like lithium manganate for rapid and selective electrochemical lithium extraction from brine[J].Chinese Journal of Chemical Engineering,2023,54:316-322. |
[40] | GU Jun, ZHOU Guolang, CHEN Linlin,et al.Particle size control and electrochemical lithium extraction performance of LiMn2O4 [J].Journal of Electroanalytical Chemistry,2023,940:117487. |
[41] | TIAN Guiying, GAO Jian, WANG Minrui,et al.Structural stabilization of Cr-doped spinel LiMn2O4 for long-term cyclability towards electrochemical lithium recovery in original brine[J].Electrochimica Acta,2024,475:143361. |
[42] | LUO Guiling, ZHU Lin, LI Xiaowei,et al.Electrochemical lithi-um ions pump for lithium recovery from brine by using a surface stability Al2O3-ZrO2 coated LiMn2O4 electrode[J].Journal of Energy Chemistry,2022,69:244-252. |
[43] | LUO Guiling, LI Xiaowei, CHEN Linlin,et al.Electrochemical recovery lithium from brine via taming surface wettability of regeneration spent batteries cathode materials[J].Applied Energy,2023,337:120890. |
[44] | ZHAO Xiaoyu, JIAO Yaoxin, XUE Peijie,et al.Efficient lithium extraction from brine using a three-dimensional nanostructured hybrid inorganic-gel framework electrode[J].ACS Sustainable Chemistry & Engineering,2020,8(12):4827-4837. |
[45] | WANG Yunhao, ZHANG Junxiang, CHENG Zeyu,et al.Hydrophilic modification using polydopamine on core-shell Li1.6Mn1.6O 4@ Carbon electrodes for lithium extraction from lake brine[J].ACS Sustainable Chemistry & Engineering,2022,10(27):8970-8979. |
[46] | GU Jun, CHEN Linlin, FAN Linjing,et al.Multistage regulation of LiMn2O4 electrode for electrochemical lithium extraction from salt-lake[J].Desalination,2024,586:117828. |
[47] | HU Bin, WANG Yiwen, ZHANG Boshuang,et al.Go-encapsulat-ed La-doped lithium manganese oxide assemblies to enhance lithium extraction performance in capacitive deionization[J].Separation and Purification Technology,2024,348:127693. |
[48] | MENG Xiaorong, JING Yue, LI Jiaming,et al.Electrochemical recovery of lithium from brine by highly stable truncated octahedral LiNi0.05Mn1.95O4 [J].Chemical Engineering Science,2024,283:119400. |
[49] | YANG Chaofan, ZHANG Xiaosong, HUANG Mengyi,et al.Preparation and rate capability of carbon coated LiNi1/3Co1/3Mn1/3O2 as cathode material in lithium ion batteries[J].ACS Applied Materials & Interfaces,2017,9(14):12408-12415. |
[50] | WANG Faxing, LIU Yu, WANG Xiaowei,et al.Aqueous rechargea-ble battery based on zinc and a composite of LiNi1/3Co1/3Mn1/3O2[J].ChemElectroChem,2015,2(7):1024-1030. |
[51] | LAWAGON C P, NISOLA G M, CUEVAS R A I,et al.Li1-xNi0.33Co1/3Mn1/3O2/Ag for electrochemical lithium recovery from brine[J].Chemical Engineering Journal,2018,348:1000-1011. |
[52] | WU You, SHI Pitong, ZHONG Yijun,et al.Improved performance of a Ni,Co-doped LiMn2O4 electrode for lithium extraction from brine[J].Energy & Fuels,2023,37(5):4083-4093. |
[53] | ZHAO Xiaoyu, FENG Minghui, JIAO Yaoxin,et al.Lithium extraction from brine in an ionic selective desalination battery[J].Desalination,2020,481:114360. |
[54] | GAMAETHIRALALAGE J G, SINGH K, SAHIN S,et al.Recent advances in ion selectivity with capacitive deionization[J].Energy & Environmental Science,2021,14(3):1095-1120. |
[55] | XING Wenle, LIANG Jie, TANG Wangwang,et al.Versatile applications of capacitive deionization(CDI)-based technologies[J].Desalination,2020,482:114390. |
[56] | KIM S,JOO H, MOON T,et al.Rapid and selective lithium recovery from desalination brine using an electrochemical system[J].Environmental Science:Processes & Impacts,2019,21(4):667- 676. |
[57] | SIEKIERKA A, TOMASZEWSKA B, BRYJAK M.Lithium capturing from geothermal water by hybrid capacitive deionization[J].Desalination,2018,436:8-14. |
[58] | ZHANG Xudong, ZUO Kuichang, ZHANG Xiaori,et al.Selective ion separation by capacitive deionization(CDI) based technologies:A state-of-the-art review[J].Environmental Science:Water Research & Technology,2020,6(2):243-257. |
[59] | KIM S, LEE J, KANG J S,et al.Lithium recovery from brine using a λ-MnO2/activated carbon hybrid supercapacitor system[J].Chemosphere,2015,125:50-56. |
[60] | SIEKIERKA A, KUJAWA J, KUJAWSKI W,et al.Lithium dedicated adsorbent for the preparation of electrodes useful in the ion pumping method[J].Separation and Purification Technology,2018,194:231-238. |
[61] | LEE J B, PARK K K, EUM H M,et al.Desalination of a thermal power plant wastewater by membrane capacitive deionization[J].Desalination,2006,196(1/2/3):125-134. |
[62] | SHI Wenhui, LIU Xiaoyue, YE Chenzeng,et al.Efficient lithium extraction by membrane capacitive deionization incorporated with monovalent selective cation exchange membrane[J].Separation and Purification Technology,2019,210:885-890. |
[63] | SUN Ying, WANG Yunhao, LIU Yang,et al.Highly efficient lithium extraction from brine with a high sodium content by adsorption-coupled electrochemical technology[J].ACS Sustainable Chemistry & Engineering,2021,9(33):11022-11031. |
[64] | GMAR S, CHAGNES A.Recent advances on electrodialysis for the recovery of lithium from primary and secondary resources[J].Hydrometallurgy,2019,189:105124. |
[65] | CHEN Qingbai, JI Zhiyong, LIU Jie,et al.Development of recovering lithium from brines by selective-electrodialysis:Effect of coexisting cations on the migration of lithium[J].Journal of Membrane Science,2018,548:408-420. |
[66] | WANG Wenguang, HONG Guanghui, ZHANG Yanqiu,et al.Designing an energy-efficient multi-stage selective electrodialysis process based on high-performance materials for lithium extraction[J].Journal of Membrane Science,2023,675:121534. |
[67] | ZHAO Zhongwei, LIU Gui, JIA Hang,et al.Sandwiched liquid-membrane electrodialysis:Lithium selective recovery from salt lake brines with high Mg/Li ratio[J].Journal of Membrane Science,2020,596:117685. |
[68] | TRÓCOLI D R, ERINMWINGBOVO C, LA MANTIA P F.Optimized lithium recovery from brines by using an electrochemical ion-pumping process based on λ-MnO2 and nickel hexacyanoferrate[J].ChemElectroChem,2017,4(1):143-149. |
[69] | ZHANG Xuefeng, WANG Jie, ZHANG Zhonglin,et al.Modelling of pseudocapacitive ion adsorption of electrochemically switched ion exchange based on electroactive site concentration[J].Separation and Purification Technology,2022,286:120451. |
[70] | ZHAO Xiaoyu, YANG Shuo, HOU Yongdan,et al.Recent progress on key materials and technical approaches for electrochemical lithium extraction processes[J].Desalination,2023,546:116189. |
[71] | DU Xiao, HAO Xiaogang, WANG Zhongde,et al.Electroactive ion exchange materials:Current status in synthesis,applications and future prospects[J].Journal of Materials Chemistry A,2016,4(17):6236-6258. |
[72] | NIU Junjian, YAN Wenjun, SONG Xiaoyuan,et al.An electrically switched ion exchange system with self-electrical-energy recuperation for efficient and selective LiCl separation from brine lakes[J].Separation and Purification Technology,2021,274:118995. |
[73] | ZHANG Zheng, DU Xiao, WANG Qiang,et al.A scalable three-dimensional porous λ-MnO2/rGO/Ca-alginate composite electroactive film with potential-responsive ion-pumping effect for selective recovery of lithium ions[J].Separation and Purification Technology,2021,259:118111. |
[74] | WANG Qiang, DU Xiao, GAO Fengfeng,et al.A novel H1.6Mn1.6O4/reduced graphene oxide composite film for selective electroche-mical capturing lithium ions with low concentration[J].Separation and Purification Technology,2019,226:59-67. |
[75] | WANG Peifen, DU Xiao, CHEN Tian,et al.A novel electroactive PPy/HKUST-1 composite film-coated electrode for the selective recovery of lithium ions with low concentrations in aqueous solutions[J].Electrochimica Acta,2019,306:35-44. |
[76] | HE Lihua, XU Wenhua, SONG Yunfeng,et al.New insights into the application of lithium-ion battery materials:Selective extraction of lithium from brines via a rocking-chair lithium-ion battery system[J].Global Challenges,2018,2(2):1700079. |
[77] | XU Wenhua, HE Lihua, ZHAO Zhongwei.Lithium extraction from high Mg/Li brine via electrochemical intercalation/de-intercalation system using LiMn2O4 materials[J].Desalination,2021,503:114935. |
[78] | GUO Zhiyuan, JI Zhiyong, WANG Jing,et al.Development of electrochemical lithium extraction based on a rocking chair system of LiMn2O4/Li1- x Mn2O4:Self-driven plus external voltage driven[J].Separation and Purification Technology,2021,259:118154. |
[79] | GUO Zhiyuan, JI Zhiyong, WANG Jing,et al.Electrochemical lithium extraction based on “rocking-chair” electrode system with high energy-efficient:The driving mode of constant current-constant voltage[J].Desalination,2022,533:115767. |
[80] | ZENG Yiwen, LI Wanpeng, WAN Zhixin,et al.Electrochemically mediated lithium extraction for energy and environmental sustainability[J].Advanced Functional Materials,2024,34(33):2400416. |
[1] | SONG Guoliang, MU Zhanpeng, YANG Xiaxia, LI Zihan, ZHU Jinjian, ZHANG Jingcheng, YANG Wenru, MA Wenqi. Effect of magnesium modulation of Ni-Mo/Al2O3 on selectivity of catalyst hydrogenation [J]. Inorganic Chemicals Industry, 2024, 56(7): 150-156. |
[2] | WANG Ting, ZHANG Wenwen, MAO Qing, LÜ Li, LIU Changzhen. Research progress of catalytic system and materials for electrocatalytic reduction of carbon dioxide to ethanol [J]. Inorganic Chemicals Industry, 2024, 56(7): 1-10. |
[3] | YAO Jiankang, HU Shuozhen, NIU Dongfang, WU Jianping, ZHANG Xinsheng. Study on electrochemical treatment of sodium chloride organic waste salt in spice industry [J]. Inorganic Chemicals Industry, 2024, 56(3): 105-115. |
[4] | MA Lianren, XIE Hongyan. Study on preparation of LiMn0.7Fe0.3PO4/C cathode materials by two-step solid-phase method with surfactant [J]. Inorganic Chemicals Industry, 2024, 56(11): 39-44. |
[5] | KANG Le, JING Maoxiang, LI Donghong, HU Xinyu, JIA Chunyan. Study on preparation and electrochemical performance of lithium aluminate nanorods modified solid electrolyte [J]. Inorganic Chemicals Industry, 2023, 55(8): 65-70. |
[6] | ZHANG Liyuan,SHEN Ruqian,YANG Jinju,LI Yan,SHUI Yi,SU Min. Research progress on lithium ion sieves [J]. Inorganic Chemicals Industry, 2022, 54(5): 28-37. |
[7] | Liu Meili,Long Xiang,Tang Haiyan,Gao Banghui,Li Long,Shao Jiaojing. Construction,properties and applications of two-dimensional nanofluidic channels [J]. Inorganic Chemicals Industry, 2021, 53(6): 101-109. |
[8] | Wang Shidong,Ye Xiushen,Li Quan,Huo Yan,Li Mingzhen,Zhang Huifang,Pang Quanshi,Wu Zhijian. Electrochemcial behavior of impurity elements in lithium electrolysis [J]. Inorganic Chemicals Industry, 2021, 53(4): 52-55. |
[9] | Zhang Zheng,Wang Shaohua,Zhao Yaxu,Hua Zhongqiu,Tian Xuemin,Wu Yi. Study on gas sensitivity of HZSM5 zeolite film combined with SnO2 for methane [J]. Inorganic Chemicals Industry, 2021, 53(2): 105-109. |
[10] | Tang Na,Gong Jingkuan,Xiang Jun. Preparation and adsorption properties of aluminum-based lithium adsorbent [J]. Inorganic Chemicals Industry, 2020, 52(8): 51-56. |
[11] | Wu Jing,Ren Xiulian,Wei Qifeng. Research progress on separation and extraction of lithium from salt-lake brine [J]. Inorganic Chemicals Industry, 2020, 52(12): 1-6. |
[12] | Ding Weichang,Liang Xiaoyi,Song Kangning. Preparation and application of polyvinyl butyral coated spherical activated carbon [J]. Inorganic Chemicals Industry, 2019, 51(10): 64-68. |
[13] | YUAN Hai-Bin, LIAO Jun, LE Xiao-Bing, ZUO Bao-Bin, LI Feng, ZHANG Chao. Study on improving selectivity of scandium extraction from titanium white waste acid [J]. INORGANICCHEMICALSINDUSTRY, 2014, 46(12): 61-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Copyright © 2021 Editorial Office of Inorganic Chemicals Industry
Add:No.3 Road Dingzigu,Hongqiao District,Tianjin,China
E-mail:book@wjygy.com.cn 违法和不良信息举报电话: 022-26689297