Inorganic Chemicals Industry ›› 2023, Vol. 55 ›› Issue (1): 151-158.doi: 10.19964/j.issn.1006-4990.2022-0162
• Catalytic Materials • Previous Articles
YANG Tinglong(),WANG Fuzhong,LIU Fei(
)
Received:
2022-11-10
Online:
2023-01-10
Published:
2023-01-17
Contact:
LIU Fei
E-mail:1640707282@qq.com;ce.feiliu@gzu.edu.cn
CLC Number:
YANG Tinglong,WANG Fuzhong,LIU Fei. Study on sulfur poisoning of zirconium-based bimetallic oxides catalyst[J]. Inorganic Chemicals Industry, 2023, 55(1): 151-158.
Table 1
Elemental compositions of bimetallic oxides catalysts"
样品 | 元素质量分数/% | m(S)/m(C) | ||||||
---|---|---|---|---|---|---|---|---|
O | Zr | In | Zn | Mo | S | C | ||
InZrO x | 25.00 | 66.63 | 8.27 | — | — | — | — | — |
S-InZrO x | 23.01 | 66.60 | 8.24 | — | — | 1.23 | 0.90 | 1.37 |
R-InZrO x | 23.53 | 66.62 | 8.25 | — | — | 0.21 | 0.89 | 0.24 |
ZnZrO x | 25.15 | 64.41 | — | 10.45 | — | — | — | — |
S-ZnZrO x | 23.55 | 64.39 | — | 10.43 | — | 1.61 | 0.02 | 80.50 |
R-ZnZrO x | 25.01 | 64.40 | — | 10.44 | — | 0.21 | 0.01 | 21.00 |
1 | GRACIANI J, MUDIYANSELAGE K, XU Fang, et al. Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO₂[J].Science, 2014, 345(6196):546-550. |
2 | YANG Haiyan, ZHANG Chen, GAO Peng, et al. A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons[J].Catalysis Science & Technology, 2017, 7(20):4580-4598. |
3 | ZOU Qizhuang, LONG Guangcai, ZHAO Tianxiang, et al. Catalyst-free selective N-formylation and N-methylation of amines using CO2 as a sustainable C1 source[J].Green Chemistry, 2020, 22(4):1134-1138. |
4 | GARCÍA-TRENCO A, REGOUTZ A, WHITE E R, et al. PdIn intermetallic nanoparticles for the hydrogenation of CO2 to metha-nol[J].Applied Catalysis B:Environmental, 2018, 220:9-18. |
5 |
LI Zhenhua, LIU Jinjia, ZHAO Yufei, et al. Co-based catalysts derived from layered-double-hydroxide nanosheets for the photothermal production of light olefins[J].Advanced Materials:Deerfield Beach, Fla.,2018, 30(31).Doi:10.1002/adma.201800527.
doi: 10.1002/adma.201800527 |
6 | WANG L, WANG L, ZHANG J, et al. Selective hydrogenation of CO2 to ethanol over cobalt catalysts[J].Angewandte Chemie:International Ed.in English, 2018, 57(21):6104-6108. |
7 | SHIH C F, ZHANG Tao, LI Jinghai, et al. Powering the future with liquid sunshine[J].Joule, 2018, 2(10):1925-1949. |
8 | BAVYKINA A, YARULINA I, ABDULGHANI A J AL, et al. Turning a methanation co catalyst into an in-co methanol producer[J].ACS Catalysis, 2019, 9(8):6910-6918. |
9 | DOSTAGIR N H M, THOMPSON C, KOBAYASHI H, et al. Rh promoted In2O3 as a highly active catalyst for CO2 hydrogenation to methanol[J].Catalysis Science & Technology, 2020, 10(24):8196-8202. |
10 | AN Bing, ZHANG Jingzheng, CHENG Kang, et al. Confinement of ultrasmall Cu/ZnO x nanoparticles in metal-organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2 [J].Journal of the American Chemical Society, 2017, 139(10):3834-3840. |
11 | KATTEL S, RAMÍREZ P J, CHEN J G, et al. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts[J].Science, 2017, 355(6331):1296-1299. |
12 | FIORDALISO E M, SHARAFUTDINOV I, CARVALHO H W P, et al. Intermetallic GaPd2 nanoparticles on SiO2 for low-pressure CO2 hydrogenation to methanol:Catalytic performance and in situ characterization[J].ACS Catalysis, 2015, 5(10):5827-5836. |
13 | KATTEL S, YU Weiting, YANG Xiaofang, et al. CO2 hydrogenation over oxide-supported PtCo catalysts:The role of the oxide support in determining the product selectivity[J].Angewandte Chemie:International Ed.in English, 2016, 55(28):7968-7973. |
14 |
WANG Jijie, LI Guanna, LI Zelong, et al. A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol[J].Science Advances, 2017, 3(10).Doi:10.1126/sciadv.1701290.
doi: 10.1126/sciadv.1701290 |
15 | WANG Jijie, TANG Chizhou, LI Guanna, et al. High-performance MaZrO x (Ma=Cd,Ga) solid-solution catalysts for CO2 hydrogenation to methanol[J].ACS Catalysis, 2019, 9(11):10253-10259. |
16 | LIU Xiaoliang, WANG Mengheng, ZHOU Cheng, et al. Selective transformation of carbon dioxide into lower olefins with a bifunctional catalyst composed of ZnGa2O4 and SAPO-34[J].Chemical Communications:Cambridge, England,2018, 54(2):140-143. |
17 | STANGELAND K, KALAI D Y, DING Yi, et al. Mesoporous manganese-cobalt oxide spinel catalysts for CO2 hydrogenation to methanol[J].Journal of CO2 Utilization, 2019, 32:146-154. |
18 | LIU Xiaoliang, WANG Mengheng, YIN Haoren, et al. Tandem catalysis for hydrogenation of CO and CO2 to lower olefins with bifunctional catalysts composed of spinel oxide and SAPO-34[J].ACS Catalysis, 2020, 10(15):8303-8314. |
19 | 肖亦寒, 曹建新, 刘飞, 等. 焙烧温度对MnZnO x 物化性质及催化性能的影响[J].无机盐工业, 2021, 53(4):95-100. |
XIAO Yihan, CAO Jianxin, LIU Fei, et al. Effect of calcination temperature on physicochemical properties and catalytic performance of MnZnO x [J].Inorganic Chemicals Industry, 2021, 53(4):95-100. | |
20 | MARTIN O, MARTÍN A J, MONDELLI C, et al. Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenati-on[J].Angewandte Chemie:International Ed.in English, 2016, 55(21):6261-6265. |
21 | DANG Shanshan, GAO Peng, LIU Ziyu, et al. Role of zirconium in direct CO2 hydrogenation to lower olefins on oxide/zeolite bifunctional catalysts[J].Journal of Catalysis, 2018, 364:382-393. |
22 |
WANG Xiuxiu, WANG Yizhou, YANG Chunliang, et al. A novel microreaction strategy to fabricate superior hybrid zirconium and zinc oxides for methanol synthesis from CO2 [J].Applied Catalysis A:General, 2020, 595.Doi:10.1016/j.apcata.2020.117507.
doi: 10.1016/j.apcata.2020.117507 |
23 | PAN Y X, LIU C J, MEI D, et al. Effects of hydration and oxygen vacancy on CO2 adsorption and activation on beta-Ga2O3(100)[J].Langmuir, 2010, 26(8):5551-5558. |
24 | GRABOWSKI R, SŁOCZYŃSKI J, ŚLIWA M, et al. Influence of polymorphic ZrO2 phases and the silver electronic state on the activity of Ag/ZrO2 catalysts in the hydrogenation of CO2 to methanol[J].ACS Catalysis, 2011, 1(4):266-278. |
25 | YE Jingyun, LIU Changjun, GE Qingfeng. DFT study of CO2 adsorption and hydrogenation on the In2O3 surface[J].The Journal of Physical Chemistry C, 2012, 116(14):7817-7825. |
26 | YE Jingyun, LIU Changjun, MEI Donghai, et al. Active oxygen vacancy site for methanol synthesis from CO2 hydrogenation on In2O3(110):A DFT study[J].ACS Catalysis, 2013, 3(6):1296-1306. |
27 | SUN Kaihang, FAN Zhigang, YE Jingyun, et al. Hydrogenation of CO2 to methanol over In2O3 catalyst[J].Journal of CO2 Utilization, 2015, 12:1-6. |
28 | KUMARI N, HAIDER M A, AGARWAL M, et al. Role of reduced CeO2(110) surface for CO2 reduction to CO and metha- |
nol[J].The Journal of Physical Chemistry C, 2016, 120(30):16626-16635. | |
29 | RUNGTAWEEVORANIT B, BAEK J, ARAUJO J R, et al. Copper nanocrystals encapsulated in Zr-based metal-organic frameworks for highly selective CO2 hydrogenation to methanol[J].Nano Letters, 2016, 16(12):7645-7649. |
30 | LARMIER K, LIAO W C, TADA S, et al. CO2-to-methanol hydrogenation on zirconia-supported copper nanoparticles:Reaction intermediates and the role of the metal-support interface[J].Angewandte Chemie:International Ed.in English, 2017, 56(9):2318-2323. |
31 |
LIU Piao, CAO Jianxin, XU Zheng, et al. Thiolation of methanol with H2S using core-shell structured ZSM-5@t-ZrO2 catalyst[J].Chemical Engineering Science, 2020, 211.Doi:10.1016/j.ces.2019.115273.
doi: 10.1016/j.ces.2019.115273 |
32 |
WANG Ying, YANG Tinglong, LIU Fei, et al. High selectivity in methanethiol synthesis over a coated composite comprising ZSM-5 with t-ZrO2 [J].Microporous and Mesoporous Materials, 2020, 305.Doi:10.1016/j.micromeso.2020.110358.
doi: 10.1016/j.micromeso.2020.110358 |
[1] | REN Qixia, YANG Kun, LIU Fei, YAO Mengqin, CAO Jianxin. Effect of promoter on physicochemical properties and catalytic performance of ZnO/ZrO2 [J]. Inorganic Chemicals Industry, 2024, 56(3): 144-154. |
[2] | ZHAN Sijin, LIU Shike, LIU Fei, YAO Mengqin, CAO Jianxin. Study on preparation and catalytic performance of ZnO-CeO2 [J]. Inorganic Chemicals Industry, 2024, 56(3): 137-143. |
[3] | YANG Kun, REN Qixia, DONG Yonggang, LIU Fei, YAO Mengqin, CAO Jianxin. Effect of calcination temperature on catalytic performance of ZnGaZrO x /SAPO-34 [J]. Inorganic Chemicals Industry, 2024, 56(2): 136-145. |
[4] | Xiao Yihan,Cao Jianxin,Liu Fei,Yi Yun. Effect of calcination temperature on physicochemical properties and catalytic performance of MnZnOx [J]. Inorganic Chemicals Industry, 2021, 53(4): 95-100. |
[5] | Li Xiangguo,Guo Miao,Yao Huimin,Lü Jing. Research on hydrothermal synthesis and photoluminescence mechanism of rhombus CeO2 [J]. Inorganic Chemicals Industry, 2020, 52(6): 30-35. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Copyright © 2021 Editorial Office of Inorganic Chemicals Industry
Add:No.3 Road Dingzigu,Hongqiao District,Tianjin,China
E-mail:book@wjygy.com.cn 违法和不良信息举报电话: 022-26689297