无机盐工业 ›› 2022, Vol. 54 ›› Issue (12): 34-43.doi: 10.19964/j.issn.1000-4990.2022-0389
何婷1,2,3(),孔娇1,2,3,崔景植4,陈志豪4,付彤彤4,郭子睿4,顾帅1,2,3(
),于建国1,2,3(
)
收稿日期:
2022-06-27
出版日期:
2022-12-10
发布日期:
2022-12-19
作者简介:
何婷(1999— ),女,在读硕士,研究方向为退役锂离子电池回收;E-mail:基金资助:
HE Ting1,2,3(),KONG Jiao1,2,3,CUI Jingzhi4,CHEN Zhihao4,FU Tongtong4,GUO Zirui4,GU Shuai1,2,3(
),YU Jianguo1,2,3(
)
Received:
2022-06-27
Published:
2022-12-10
Online:
2022-12-19
摘要:
近年来锂离子电池的需求量快速增长,产生了大量退役锂离子电池(LIBs)。回收退役LIBs对保障中国的清洁能源安全具有重要意义。电化学浸出退役LIBs正极材料是一种绿色经济的回收方法。目前,电化学法回收退役LIBs存在浸出时间长、电流效率低、槽压高的问题。基于此,提出了一种牺牲阳极的电化学还原回收退役LIBs的方法。该方法以退役LIBs正极材料为阴极,以铜板为阳极,在盐酸体系下进行电化学浸出。在最佳条件下锂离子和钴离子的浸出率均达到99.9%、电流效率高达99.8%、槽压小于0.427 V。使用基于Eh-pH和Matlab的热力学计算方法,对电化学还原浸出体系进行了热力学研究。研究结果表明,温度升高,配合物种类增多、配位物种占比增大,有助于浸出反应平衡正向移动。
中图分类号:
何婷,孔娇,崔景植,陈志豪,付彤彤,郭子睿,顾帅,于建国. 退役锂离子电池电化学还原浸出及热力学研究[J]. 无机盐工业, 2022, 54(12): 34-43.
HE Ting,KONG Jiao,CUI Jingzhi,CHEN Zhihao,FU Tongtong,GUO Zirui,GU Shuai,YU Jianguo. Study on leaching and thermodynamic of spent lithium-ion batteries with electrochemical reduction[J]. Inorganic Chemicals Industry, 2022, 54(12): 34-43.
表1
电化学法回收退役锂离子电池正极材料参数
阴极材料 | 阳极材料 | 浸出机理 | 浸出率/% | 槽压/V |
---|---|---|---|---|
剥离铝箔,退役LiCoO2通 过导电胶粘接在Pt片上 | Pt片 | 阴极:LiCoO2+4H++e-=Li++Co2++2H2O 2H++2e-=H2 阳极:2H2O-4e-=4H++O2 | Li:94.2 Co:90.5 | 8[ |
带有铝箔的圆形退役LiCoO2 | Pt片 | 阴极:LiCoO2+4H++e-=Li++Co2++2H2O 2H++2e-=H2 阳极:2H2O-4e-=4H++O2 | Li:98.1 Co:97.4 | 8[ |
碳布(2 cm×5 cm) | LiNi x Co y Mn z O2(NCM) (2 cm×5 cm) | 阴极:4H++4e-=2H2 阳极:LiNi x Co y Mn z O2-εe-=εLi++Li1-ε Ni x Co y Mn z O2 4OH--4e-=O2+2H2O | Li:98.7 选择性:99.2 | 4[ |
钛网 | 退役LIBs正极材料 涂覆在碳纤维布上 | 阴极:δH++δe-=1/2δH2 δH2O=δH++δOH- 阳极:LiNi x Co y Mn z O2=δLi++Li1-δ Ni x Co y Mn z O2+δe- | Li:99.7 | 2[ |
Pt片 | 退役LIBs正极材料 (2 cm×5 cm) | 阴极:4H++4e-=2H2 阳极:2H2O-4e-=4H++O2 LiNi x Co y Mn z O2=δLi++Li1-δ Ni x Co y Mn z O2+δe- 4OH--4e-=O2+2H2O | Li,Co,Ni,Mn:>98.0 | 25[ |
1 | WANG Yuqing, AN Ning, WEN Lei, et al. Recent progress on the recycling technology of Li-ion batteries[J]. Journal of Energy Chemistry, 2021, 55: 391-419. |
2 | CHANG Xin, FAN Min, GU Chaofan, et al. Selective extraction of transition metals from spent LiNi x Co y Mn1- x- y O2 cathode via regulation of coordination environment[J]. Angewandte Chemie, 2022, 134(24).Doi:10.1002/ange.202202558 . |
3 | ZHAO Yunze, LIU Bingguo, ZHANG Libo, et al. Microwave pyrolysis of macadamia shells for efficiently recycling lithium from spent lithium-ion batteries[J]. Journal of Hazardous Materials, 2020, 396.Doi:10.1016/j.jhazmat.2020.122740 . |
4 | XIAO Hougui, JI Guanjun, YE Long, et al. Efficient regeneration and reutilization of degraded graphite as advanced anode for lithi-um-ion batteries[J]. Journal of Alloys and Compounds, 2021, 888.Doi:10.1016/j.jallcom.2021.161593 . |
5 | LI Jun, LAI Yiming, ZHU Xianqing, et al. Pyrolysis kinetics and reaction mechanism of the electrode materials during the spent LiCoO2 batteries recovery process[J]. Journal of Hazardous Materials, 2020, 398.Doi:10.1016/j.jhazmat.2020.122955 . |
6 | FAN Ersha, LI Li, WANG Zhenpo, et al. Sustainable recycling technology for Li-ion batteries and beyond:Challenges and future prospects[J]. Chemical Reviews, 2020, 120(14):7020-7063. |
7 | CHEN Dongdong, RAO Shuai, WANG Dongxing, et al. Synergistic leaching of valuable metals from spent Li-ion batteries using sulfuric acid-l-ascorbic acid system[J]. Chemical Engineering Journal, 2020, 388.Doi:10.1016/j.cej.2020.124321 . |
8 | 钟雪虎, 陈玲玲, 韩俊伟, 等. 废旧锂离子电池资源现状及回收利用[J]. 工程科学学报, 2021, 43(2):161-169. |
ZHONG Xuehu, CHEN Lingling, HAN Junwei, et al. Overview of present situation and technologies for the recovery of spent lithium-ion batteries[J]. Chinese Journal of Engineering, 2021, 43(2):161-169. | |
9 | XIAO Jiefeng, NIU Bo, SONG Qingming, et al. Novel targetedly extracting lithium:An environmental-friendly controlled chlorinating technology and mechanism of spent lithium ion batteries reco-very[J]. Journal of Hazardous Materials, 2021, 404.Doi:10.1016/j.jhazmat.2020123947 . |
10 | XIAO Jiefeng, GAO Ruitong, NIU Bo, et al. Study of reaction characteristics and controlling mechanism of chlorinating conversion of cathode materials from spent lithium-ion batteries[J]. Journal of Hazardous Materials, 2021, 407.Doi:10.1016/j.jhazmat.2020.124704 . |
11 | XIAO Jiefeng, NIU Bo, XU Zhenming. Highly efficient selective recovery of lithium from spent lithium-ion batteries by thermal reduction with cheap ammonia reagent[J]. Journal of Hazardous Materials, 2021, 418.Doi:10.1016/j.jhazmat.2021.126319 . |
12 | HU Xianfeng, MOUSA E, TIAN Yang, et al. Recovery of Co,Ni,Mn,and Li from Li-ion batteries by smelting reduction-Part I:A laboratory-scale study[J]. Journal of Power Sources, 2021, 483.Doi:10.1016/j.jpowsour.2020.228936 . |
13 | HU Xianfeng, MOUSA E, YE Guozhu. Recovery of Co,Ni,Mn,and Li from Li-ion batteries by smelting reduction-Part Ⅱ:A pilot-scale demonstration[J]. Journal of Power Sources, 2021, 483.Doi:10.1016/j.jpowsour.2020.229089 . |
14 | TANG Yiqi, QU Xin, ZHANG Beilei, et al. Recycling of spent lithium nickel cobalt manganese oxides via a low-temperature ammonium sulfation roasting approach[J]. Journal of Cleaner Production, 2021, 279.Doi:10.1016/j.jclepro.2020.123633 . |
15 | HOREH N B, MOUSAVI S M, SHOJAOSADATI S A. Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus Niger[J]. Journal of Power Sources, 2016, 320: 257-266. |
16 | JEGAN ROY J, SRINIVASAN M, CAO Bin. Bioleaching as an eco-friendly approach for metal recovery from spent NMC-based lithium-ion batteries at a high pulp density[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(8):3060-3069. |
17 | XING Lei, BAO Jieru, ZHOU Shiyu, et al. Ultra-fast leaching of critical metals from spent lithium-ion batteries cathode materials achieved by the synergy-coordination mechanism[J]. Chemi-cal Engineering Journal, 2021, 420.Doi:10.1016/j.cej.2021.129593 . |
18 | LI Li, ZHAI Longyu, ZHANG Xiaoxiao, et al. Recovery of valuable metals from spent lithium-ion batteries by ultrasonic-assisted leaching process[J]. Journal of Power Sources, 2014, 262: 380-385. |
19 | GU Shuai, KONG Jiao, XING Lei, et al. Insights into the coordination enhanced leaching mechanism of spent lithium-ion batteries cathode materials[J]. Journal of Environmental Chemical Engineering, 2022, 10(3).Doi:10.1016/j.jece.2022.107745 . |
20 | LI Shuzhen, WU Xin, JIANG Youzhou, et al. Novel electrochemically driven and internal circulation process for valuable metals recycling from spent lithium-ion batteries[J]. Waste Management, 2021, 136: 18-27. |
21 | JANG Y, HOU C H, PARK S, et al. Direct electrochemical lithium recovery from acidic lithium-ion battery leachate using intercalation electrodes[J]. Resources,Conservation and Recycling, 2021, 175.Doi:10.1016/j.resconrec.2021.105837 . |
22 | 赵鹏飞, 尹晓莹, 满瑞林. 电解法在废旧锂电池浸出过程中的应用[J]. 中国有色冶金, 2014, 43(5):73-78. |
ZHAO Pengfei, YIN Xiaoying, MAN Ruilin. Application of electrolytic method in spent Li-ion battery leaching process[J]. China Nonferrous Metallurgy, 2014, 43(5):73-78. | |
23 | MENG Qi, ZHANG Yingjie, DONG Peng. Use of electrochemical cathode-reduction method for leaching of cobalt from spent lithi-um-ion batteries[J]. Journal of Cleaner Production, 2018, 180: 64-70. |
24 | ZHOU Siyuan, ZHANG Yingjie, MENG Qi, et al. Recycling of spent LiCoO2 materials by electrolytic leaching of cathode electrode plate[J]. Journal of Environmental Chemical Engineering, 2021, 9(1).Doi:10.1016/j.jece.2020.104789 . |
25 | DANG Sen, HOU Wei, MIN Yulin, et al. Electro-oxidation:A win-win strategy for the selective recovery of Li+ from spent lithium-ion batteries and the preparation of highly active catalysts[J]. Chemical Engineering Journal, 2022, 435.Doi:10.1016/j.cej.2022.135169 . |
26 | LV Hong, HUANG Haijian, HUANG Cheng, et al. Electric field driven de-lithiation:A strategy towards comprehensive and efficient recycling of electrode materials from spent lithium ion batteries[J]. Applied Catalysis B:Environmental, 2021, 283.Doi:10.1016/j.apcatb.2020.119634 . |
27 | LIU Kui, YANG Shenglong, LAI Feiyan, et al. Innovative electrochemical strategy to recovery of cathode and efficient lithium leaching from spent lithium-ion batteries[J]. ACS Applied Energy Materials, 2020, 3(5):4767-4776. |
28 | ZHANG Beilei, QU Xin, QU Jiakang, et al. A paired electrolysis approach for recycling spent lithium iron phosphate batteries in an undivided molten salt cell[J]. Green Chemistry, 2020, 22(24):8633-8641. |
29 | HUA Yunhui, XU Zhenghe, ZHAO Baojun, et al. Electric potential-determined redox intermediates for effective recycling of spent lithium-ion batteries[J]. Green Chemistry, 2022, 24(9):3723-3735. |
30 | LV Weiguang, RUAN Dingshan, ZHENG Xiaohong, et al. One-step recovery of valuable metals from spent lithium-ion batteries and synthesis of persulfate through paired electrolysis[J]. Chemical Engineering Journal, 2021, 421.Doi:10.1016/j.cej.2021.129908 . |
31 | MIGDISOV A A, ZEZIN D, WILLIAMS-JONES A E. An experimental study of Cobalt(Ⅱ) complexation in Cl- and H2S-bearing hydrothermal solutions[J]. Geochimica et Cosmochimica Acta, 2011, 75(14):4065-4079. |
32 | PAN Pujing, SUSAK N J. Co(Ⅱ)-chloride and-bromide complexes in aqueous solutions up to 5 m NaX and 90 ℃:Spectrophotometric study and geological implications[J]. Geochimica et Cosmochimica Acta, 1989, 53(2):327-341. |
33 | LIU Weihua, BORG S J, TESTEMALE D, et al. Speciation and thermodynamic properties for cobalt chloride complexes in hydrothermal fluids at 35~440 ℃ and 600 bar:An in situ XAS study[J]. Geochimica et Cosmochimica Acta, 2011, 75(5):1227-1248. |
34 | HUANG T C, TSAI T H. Extraction equilibrium of cobalt(Ⅱ) from sulphate solutions by di(2-etrylhexyl)phosphoric acid dissolved in kerosene[J]. Polyhedron, 1990, 9(9):1147-1153. |
35 | GU Shuai, ZHANG Liang, FU Bitian, et al. Recycling of mixed lithium-ion battery cathode materials with spent lead-acid battery electrolyte with the assistance of thermodynamic simulations[J]. Journal of Cleaner Production, 2020, 266.Doi:10.1016/j.jclepro.2020.121827 . |
36 | WANG Mengmeng, ZHANG Congcong, ZHANG Fushen. An environmental benign process for cobalt and lithium recovery from spent lithium-ion batteries by mechanochemical approach[J]. Waste Management, 2016, 51: 239-244. |
37 | 赵中伟, 霍广生. Li-Mn-H2O系热力学分析[J]. 中国有色金属学报, 2004, 14(11):1926-1933. |
ZHAO Zhongwei, HUO Guangsheng. Thermodynamic analysis of Li-Mn-H2O system[J]. The Chinese Journal of Nonferrous Metals, 2004, 14(11):1926-1933. | |
38 | 文士美, 赵中伟, 霍广生. Li-Co-H2O系热力学分析及E-pH图[J]. 电源技术, 2005, 29(7):423-426. |
WEN Shimei, ZHAO Zhongwei, HUO Guangsheng. Thermodynamic analysis and potential-pH diagrams of Li-Co-H2O system[J]. Chinese Journal of Power Sources, 2005, 29(7):423-426. | |
39 | 郭持皓, 赵中伟, 霍广生. Li-Ni-H2O系的热力学分析[J]. 电源技术, 2005, 29(6):376-379. |
GUO Chihao, ZHAO Zhongwei, HUO Guangsheng. Thermodyna-mic analysis on Li-Ni-H2O system[J]. Chinese Journal of Power Sources, 2005, 29(6):376-379. | |
40 | WANG Hongmin, LI Mengran, GARG S, et al. Cobalt electroche-mical recovery from lithium cobalt oxides in deep eutectic choline Chloride+Urea solvents[J]. ChemSusChem, 2021, 14(14):2972-2983. |
41 | PRABAHARAN G, BARIK S P, KUMAR N, et al. Electrochemical process for electrode material of spent lithium ion batteries[J]. Waste Management, 2017, 68: 527-533. |
42 | HE Lipo, SUN Shuying, SONG Xingfu, et al. Leaching process for recovering valuable metals from the LiNi1/3Co1/3Mn1/3O2 cathode of lithium-ion batteries[J]. Waste Management, 2017, 64: 171- 181. |
43 | HE Yaqun, ZHANG Tao, WANG Fangfang, et al. Recovery of LiCoO2 and graphite from spent lithium-ion batteries by Fenton reagent-assisted flotation[J]. Journal of Cleaner Production, 2017, 143: 319-325. |
44 | MAY M, KUO J, TAN C T. Vacuum electrolysis reactor technique for quantitation of 13-carbon isotope enrichment at the C1-position of formic acid and acetic acid[J]. Analytical Chemistry, 2004, 76(18):5313-5318. |
45 | NAIR S M K, JAMES C. Numerical data for the commonly used solid-state reaction equations[J]. Thermochimica Acta, 1985, 83(2):387-389. |
46 | DICKINSON C F, HEAL G R. Solid-liquid diffusion controlled rate equations[J]. Thermochimica Acta, 1999, 340-341: 89- 103. |
47 | LI Li, FAN Ersha, GUAN Yibiao, et al. Sustainable recovery of cathode materials from spent lithium-ion batteries using lactic acid leaching system[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6):5224-5233. |
48 | FEAR C, JUAREZ-ROBLES D, JEEVARAJAN J A, et al. Elucidating copper dissolution phenomenon in Li-ion cells under overdischarge extremes[J]. Journal of the Electrochemical Society, 2018, 165(9):A1639-A1647. |
49 | CIFUENTES G, HERNÁNDEZ J, GUAJARDO N. Recovering scrap anode copper using reactive electrodialysis[J]. American Journal of Analytical Chemistry, 2014, 5(15):1020-1027. |
50 | KOGA T, NONAKA K, SAKATA Y, et al. Electrochemical formation and accumulation of Cu(Ⅰ) in copper sulfate electroplating solution[J]. Journal of the Electrochemical Society, 2018, 165(10):D423-D426. |
[1] | 唐东武, 叶长文, 邓杰, 敖芳. 基于热力学分析与响应曲面法研究磷尾矿中钙镁浸出率[J]. 无机盐工业, 2024, 56(9): 98-106. |
[2] | 朱宗将, 王刚, 魏元峰, 唐艳红, 角田诚, 刘承斌. 退役锂离子电池电解液资源化回收技术进展与展望[J]. 无机盐工业, 2024, 56(7): 11-17. |
[3] | 方小宁, 匡飞, 刘程琳. 钾长石混盐焙烧-浸出提钾过程研究[J]. 无机盐工业, 2024, 56(5): 53-57. |
[4] | 田晓利, 李志勋, 冯润棠, 张洁, 郑全福, 史旭武, 杜永彬. 西藏卡玛多微晶菱镁矿热分解行为研究[J]. 无机盐工业, 2023, 55(3): 60-65. |
[5] | 邓文清,朱静,樊小娟,陈艳,李天祥. 313.15 K下三元体系KH2PO4-(NH2)2CO-H2O相平衡研究[J]. 无机盐工业, 2023, 55(1): 100-105. |
[6] | 周诗雨,何婷,付彤彤,郭子睿,顾帅,于建国. 退役锂离子电池湿法回收生命周期和经济评价[J]. 无机盐工业, 2023, 55(1): 26-32. |
[7] | 刘治国,张娜,陈川,徐显朕. 水盐体系汽液平衡的热力学模型研究[J]. 无机盐工业, 2021, 53(8): 55-59. |
[8] | 梁宁,莫福金,周街荣,王军正. 污泥生物炭制备及其对磷的吸附性能研究[J]. 无机盐工业, 2021, 53(6): 174-179. |
[9] | 李非,周建敏,李铖钰,徐文涛,张昕玥,李欣伟,王军,纪志永,赵颖颖,郭小甫,袁俊生. 氯化铵转化新工艺的机理及条件探究[J]. 无机盐工业, 2021, 53(3): 48-53. |
[10] | 梁成波,解田,杨林,何兵兵. 磷酸分解磷矿过程中金属元素的浸出规律研究[J]. 无机盐工业, 2021, 53(11): 49-54. |
[11] | 刘珏欣,郑承刚,叶世超. 磷酸二氢钾结晶热力学数据的测定及应用研究[J]. 无机盐工业, 2021, 53(1): 62-64. |
[12] | 王浩浩,笪涛,叶世超. 氯化铵结晶过程实验研究[J]. 无机盐工业, 2020, 52(4): 49-52. |
[13] | 朱慧霞,张婷,韩琮,孙丽娜,李玲. 钾长石负载二氧化锰对Ni 2+的吸附性能研究[J]. 无机盐工业, 2020, 52(1): 44-48. |
[14] | 李颖,陈侠,苗淑兰,廖恩鑫. 磷钨酸铵复合材料对铷铯吸附性能的研究[J]. 无机盐工业, 2019, 51(6): 34-37. |
[15] | 蒋 兵, 许 盛, 张志业, 王辛龙, 杨 林, 杨秀山, 孔行健. 不同气氛对硫铁矿和硫酸亚铁反应的影响研究[J]. 无机盐工业, 2016, 48(8): 35-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|