[1] |
Geim A K, Novoselov K S . The rise of graphene[J]. Nature Materials, 2007,6(3):183-191.
|
[2] |
Novoselov K S, Geim A K . Electric field effect in atomically thin car-bon films[J]. Science, 2004,306(5696):666-669.
|
[3] |
Geim A K . Graphene:status and prospects[J]. Science, 2009,324(5934):1530-1534.
|
[4] |
Wu J S, Pisula W, Müllen K . Graphenes as potential material for electronics[J]. Chemical Reviews, 2007,107(3):718-747.
|
[5] |
Rao C N R, Sood A K . Some novel attributes of graphene[J]. Journal of Physical Chemistry Letters, 2010,1(2):572-580.
|
[6] |
Allen M J, Tung V C, Kaner R B . Honeycomb carbon:a review of graphene[J]. Chemical Reviews, 2010,110(1):132-145.
|
[7] |
刘义林, 高原, 鲍建设 , 等. 功能化石墨烯掺杂熔盐的制备及性能研究[J]. 无机盐工业, 2016,48(7):16-20.
|
[8] |
Lee C . Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008,321(5887):385-388.
|
[9] |
van den Brink J . Graphene:from strength to strength[J]. Nature Nano-technology, 2007,2(4):199-201.
|
[10] |
Mayorov A S, Gorbachev R V, Morozov S V , et al. Micrometer-scale ballistic transport in encapsulated graphene at room tempera-ture[J]. Nano Letters, 2011,11(6):2396-2399.
|
[11] |
Solís-Fernández P, Bissett M, Ago H . Synjournal,structure and ap-plications of graphene-based 2D heterostructures[J]. Chemistry Society Reviews, 2017,46(15):4572-4613.
|
[12] |
Jan R, Habib A, Akram M A , et al. Uniaxial drawing of graphene-PVA nanocomposites:improvement in mechanical characteristics via strain-induced exfoliation of graphene[J]. Nanoscale Research Letters, 2016,11(1):3771-3779.
|
[13] |
Lin Z, Karthik P S . Simple technique of exfoliation and dispersion of multilayer graphene from natural graphite by ozone-assisted sonication[J]. Nanomaterials, 2017,7(6):12501-12510.
|
[14] |
Brodie B C .On the atomic weight of graphite[J].Philosophical Tr-ansactions of the Royal Society of London, 1859,149:249-259.
|
[15] |
Staudenmaier L .Verfahren zur darstellung der graphitsäure[J].Berichte der Deutschen Chemischen Gesellschaft, 1898,31(2):1481-1487.
|
[16] |
Hummers Jr W S, Offeman R E . Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958,80(6):1339.
|
[17] |
Li D, Müller M B, Gilje S , et al. Processable aqueous dispersion of graphene nanosheets[J]. Nature Nanotechnology, 2008,3:101-105.
|
[18] |
Fu W Z, Zhang Z Q . One-pot hydrothermal synjournal of magneti-cally recoverable palladium/reduced graphene oxide nanocompo-sites and its catalytic applications in cross-coupling reactions[J]. Journal of Colloid and Interface Science, 2017,497:83-92.
|
[19] |
Kumar R, Singh R K, Vaz A R , et al. Self-assembled and one-step synjournal of interconnected 3D network of Fe3O4/reduced grapheneoxide nanosheets hybrid for high-performance supercapacitor elec-trode[J]. ACS Applied Materials & Interfaces, 2017,9:8880-8890.
|
[20] |
Song J, Kang S W . Regulating the catalytic function of reduced gr-aphene oxides using capping agents for metal-free catalysis[J]. ACS Applied Materials & Interfaces, 2017,9:1692-1701.
|
[21] |
Peng L, Xu Z, Liu Z , et al. An iron-based green approach to 1-hproduction of single-layer graphene oxide[J]. Nature Communica-tions, 2015,6:57161-57169.
|
[22] |
Babichev A V, Rykov S A, Tchernycheva M , et al. Influence of su-bstrate microstructure on the transport properties of CVD-grap-hene[J]. ACS Applied Materials & Interfaces, 2016,8:240-246.
|
[23] |
Hemasiri B W N H, Kim J K, Lee J M . Fabrication of highly conduc-tive graphene/ITO transparent bi-film through CVD and organic additives-free sol-gel techniques[J]. Scientific Reports, 2017,7:1786801-1786812.
|
[24] |
Komissarov I V, Kovalchuk N G . Nitrogen-doped twisted graphene grown on copper by atmospheric pressure CVD from a decane pre-cursor[J]. Beilstein Journal of Nanotechnology, 2017,8:145-158.
|
[25] |
Pasternak I . Graphene growth on Ge(100)/Si(100) substrates by CVD method[J]. Scientific Reports, 2016,6:217731-217737.
|
[26] |
Li J H, Wang G, Geng H , et al. CVD growth of graphene on NiTi al-loy for enhanced biological activity[J]. ACS Applied Materials & Interfaces, 2015,7:19876-19881.
|
[27] |
Du Y, Li N, Zhang T L , et al. Reduced graphene oxide coating with anticorrosion and electrochemical property-enhancing effects ap-plied in hydrogen storage system[J]. ACS Applied Materials & Interfaces, 2017,9:28980-28989.
|
[28] |
Wan L F, Liu Y S, Cho E S , et al. Atomically thin interfacial subo-xide key to hydrogen storage performance enhancements of magne-sium nanoparticles encapsulated in reduced graphene oxide[J]. Nano Letters, 2017,17:5540-5545.
|
[29] |
Cho E S, Ruminski A M . Graphene oxide/metal nano-crystal multil-aminates as the atomic limit for safe and selective hydrogen stora-ge[J]. Nature Communications, 2016,7:108041-108047.
|
[30] |
Kim S, Kim S K . Reduced graphene oxide/LiI composite lithiumion battery cathodes[J]. Nano Letters, 2017,17:6893-6899.
|
[31] |
Chang P, Liu X X . Constructing three-dimensional honeycombed graphene/silicon skeletons for high-performance Li-ion batteri-es[J]. ACS Applied Materials & Interfaces, 2017,9:31879-31886.
|
[32] |
Mo R W, Rooney D, Sun K N , et al. 3D nitrogen-doped graphene foam with encapsulated germanium/nitrogen-doped graphene yolk-shell nanoarchitecture for high-performance flexible Li-ion batt-ery[J]. Nature Communications, 2017,8:139491-139499.
|
[33] |
Russier J, León V, Orecchioni M , et al. Few-layer graphene kills selectively tumor cells from myelomonocytic leukemia patients[J]. Angewandte Chemie International Edition, 2017,56:3014-3019.
|
[34] |
Dai C . Two-dimensional graphene augments nanosonosensitized so-nocatalytic tumor eradication[J]. ACS Nano, 2017,11:9467-9480.
|
[35] |
Zhu J Q, Xu M . Graphene oxide induced perturbation to plasma membrane and cytoskeletal meshwork sensitize cancer cells to chemotherapeutic agents[J]. ACS Nano, 2017,11:2637-2651.
|
[36] |
Chen Y Y, Song X H . A phosphorylethanolamine-functionalized super-hydrophilic 3D graphene-based foam filter for water purifica-tion[J]. Journal of Hazardous Materials, 2018,343:298-303.
|
[37] |
Xu W L, Fang C, Zhou F L , et al. Self-assembly:a facile way of form-ing ultrathin,high-performance graphene oxide membranes for wa-ter puriflcation[J]. Nano Letters, 2017,17:2928-2933.
|
[38] |
Zhu C T, Liu P, Mathew A P . Self-assembled TEMPO cellulose nano-flbers:Graphene oxide-based biohybrids for water puriflcation[J]. ACS Applied Materials & Interfaces, 2017,9:21048-21058.
|