[1] |
Efros A L, Rosen M, Kuno M, et al. Band-edge exciton in quantum dots of semiconductors with a degenerate valence band:Dark and bright exciton states[J]. Physical Review.B,Condensed ,Matter, 1996,54(7):4843-4856.
|
[2] |
Viktorovitch P. Physics of slow bloch modes and their applica-tions[J]. Photonic Crystals:Physics and Technology, 2008,35(1):145-189.
|
[3] |
Hu N, Karube Y, Yan C, et al. Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor[J]. Acta Materialia, 2008,56(13):2929-2936.
|
[4] |
Peng K Q, Lee S T. Silicon nanowires for photovoltaic solar energy conversion[J]. Advanced Materials, 2011,23(2):198-215.
|
[5] |
Chan C K, Peng H, Liu G, et al. High-performance lithium battery anodes using silicon nanowires[J]. Nature Nanotechnology, 2008,3(1):31-35.
|
[6] |
Morales A M. A laser ablation method for the synjournal of crystalline semiconductor nanowires[J]. Science, 1998,279(5348):208-211.
|
[7] |
Tang Y H, Zhang Y F, Wang N, et al. Morphology of Si nanowires synthesized by high-temperature laser ablation[J]. Journal of App-lied Physics, 1999,85(11):7981-7983.
|
[8] |
Tang Y H, Zhang Y F, Lee C, et al. Large scale synjournal of silicon nanowires by laser ablation[J]. Mrs Proceedings, 1998,526:550-578.
|
[9] |
Xu Yajie, Zhang Chuanbao, Zhu Bing, et al. Preparation of aligned am-orphous silica nanowires[J]. Chemistry Letters, 2005,34:414-415.
|
[10] |
Corobea M C, Muhulet O, Miculescu F, et al. Novel nanocomposite membranes from cellulose acetate and clay-silica nanowires[J]. Polymers for Advanced Technologies, 2016,112:339-412.
|
[11] |
Bi Wuguo, Song Rongjun, Meng Xiaoyu, et al. In situ synjournal of silica gel nanowire/Na+-montmorillonite nanocomposites by the sol-gel route[J]. Nanotechnology, 2007,18:144-185.
|
[12] |
Liu Y, Fu Q, Lin H, et al. Synjournal and characterisation of self-as-sembled SiC nanowires and nanoribbons by using sol-gel carbo-thermal reduction[J]. Advances in Applied Ceramics, 2018,133:23-29
|
[13] |
蒋登辉. 微纳米空心结构的微乳两相法制备及其性能研究[D]. 上海:上海交通大学, 2012.
|
[14] |
Feng Y F, Peng C, Hu J B, et al. Robust wear and pH endurance achieved on snake-shaped silica hybrid nanowires self-woven superamphiphobic membranes with layer-stacked porous 3D net-works[J]. Journal of Materials Chemistry A, 2018.Doi: 10.1039.C8TA03939A.
|
[15] |
Jin Q R, Li X H, Deng C, et al. Silica nanowires with tunable hydrophobicity for lipase immobilization and biocatalytic mem-brane assembly[J]. Journal of Colloid and Interface Science, 2018,531:555-563.
|
[16] |
Wu C Y, Lin Y J, Chang H C, et al. Effects of H2O2 treatment on the temperature-dependent behavior of carrier transport and the opto-electronic properties for sol-gel grown MoS2/Si nanowire/Si devic-es[J]. Journal of Materials Science:Materials in Electronics, 2018,235:334-358.
|
[17] |
Lebedev M S, Khmel S Y, Lyulyukin M N, et al. Low-temperature fabrication of SiOx-TiO2 core-shell nanowires for photocatalytic app-lication[J]. Vacuum, 2019,165:51-57.
|
[18] |
Mahdi Alizadeh, Najwa binti Hamzan,Pho Choon Ooi,et al.Solidstate limited nucleation of NiSi,SiC core-shell nanowires by hot-wire chemical vapor deposition[J]. Materials, 2019,12:642-674.
|
[19] |
Najwa binti Hamzan, Muhammad Mukhlis bin Ramly, Nay Ming Huang, et al. Growth of high density NiSi,SiC core-shell nanowires by hot-wire chemical vapour deposition for electrochemical applications[J]. Materials Characterization, 2017,132:187-198.
|
[20] |
Soam A, Meshram N, Arya N, et al. Controlling the geometrical ori-entation of hot-wire chemical vapor process grown silicon nanowi-res[J]. Thin Solid Films, 2016: S0040609016308215.
|
[21] |
Baranov E A, Zamchiy A O, Khmel S Y. Synjournal and morphology of silicon oxide nanowires from a free jet activated by electron-beam plasma[J]. Journal of Engineering Thermophysics, 2016,25(2):239-247.
|
[22] |
Zamchiy A O, Baranov, E.A, Khmel S Y, et al.Deposition time de-pendence of the morphology and properties of tin-catalyzed silicon oxide nanowires synthesized by the gas-jet electron beam plasma chemical vapor deposition method[J]. Thin Solid Films, 2018,654:61-68.
|
[23] |
Khmel S Y, Baranov E A, Zaikovskii A V, et al. Synjournal of silidon oxide nanowires by the GJ EBP CVD method using different dilu-ent gases[J]. Applications and Materials Science, 2016,23:240-244.
|
[24] |
Khmel S, Baranov E, Barsukov A, et al. Title indium-assisted plas-ma-enhanced low-temperature growth of silicon oxide nanowi-res[J]. Physica Status Solidi(a), 2018: 1700749.
|
[25] |
Lu C X, Liu W W, Wang X, et al. Solid source growth of Si oxide nanowires promoted by carbon nanotubes[J]. Applied Surface Sci-ence, 2014,314:119-123.
|
[26] |
Luo Weichenpei, Li Gongyi, Chu Zengyong, et al. SiC nanowires synthesized from graphene and silicon vapors[J]. Applied Physics A, 2016,122(4):446.
|
[27] |
Chen K, Huang Z H, Huang J T, et al. Synjournal of SiC nanowires bythermal evaporation method without catalyst assistant[J]. Ceramics International, 2013,39(2):1957-1962.
|
[28] |
Chen J J, Pan Y, Wu R. Growth mechanism of twinned SiC nanowires synthesized by a simple thermal evaporation method[J]. Physica E, 2010,42(9):2335-2340.
|
[29] |
Heidaryan N, Eshghi H . An investigation on physical properties of SiOx nanowires deposited by chemical vapor deposition method:The effect of substrate to boat distance[J]. Modern Physics Letters B, 2017,31(25):2979-2984.
|
[30] |
Al-Ruqeishi M S, Nor R M, Amin Y M, et al. Direct growth and photoluminescence of silicon nanowires without catalyst[J]. Arabian Journal of Chemistry, 2013: S1878535213002323.
|
[31] |
Zhang D H, Zhang X, Wei J, et al. Growth of tapered silica nanowireswith a shallow U-shaped vapor chamber:Growth mechanism and structural and optical properties[J]. Journal of Applied Physics, 2015,117(16):1410-1411.
|
[32] |
Senapati S, Rath A, Nanda K K. Understanding the unusual photo-luminescence properties of SiOr,xr,nanoropes prepared by ther-mal evaporation method[J]. Applied Physics A, 2018,124(1):61-65.
|
[33] |
Ha J K, Cho K K.Preparation of amorphous silicon oxide nanowires by the thermal heating of Ni or Au-coated Si dubstrates[J].App-lied Mechanics and Materials, 2011,110/111/112/113/114/115/116:1087-1093.
|
[34] |
Pham V T, Le V N, Chu A T, et al. Silicon nanowires prepared by thermal evaporation and their photoluminescence properties mea-sured at low temperatures[J]. Advances in Natural Sciences:Nano-science and Nanotechnology, 2011,2(1):015016.
|
[35] |
李杨杨. 溶胶凝胶氧化硅纳米材料及其生物功能因子传输性能研究[D]. 杭州:浙江大学, 2017.
|
[36] |
贺海宴. 一维氧化硅基纳米结构的电纺制备、微结构控制和性能研究[D]. 杭州:浙江大学, 2013.
|
[37] |
Brodoceanu D, Alhmoud H Z, Elnathan R, et al. Fabrication of sil-icon nanowire arrays by near-field laser ablation and metal-assis-ted chemical etching[J]. Nanotechnology, 2016,27(7):075301.
|
[38] |
Michele C, Rosaria P, Caterina F, et al. Catalytic activity of silicon nanowires decorated with gold and copper nanoparticles deposited by pulsed laser ablation[J]. Nanomaterials, 2018,8(2):78-82.
|
[39] |
Kokai F, Sawada N, Kazuya H, et al. Silicon-catalyzed growth of amorphous SiOr,xr,nanowires by continuous-wave laser ablation of SiO in high-pressure gas[J]. Applied Physics A, 2018,124(1):40-44.
|