无机盐工业 ›› 2023, Vol. 55 ›› Issue (11): 1-11.doi: 10.19964/j.issn.1006-4990.2023-0193
• 综述与专论 • 下一篇
朱瑞松(), 曹靖, 刘陶然, 李应文, 高飞, 胡雪生(
)
收稿日期:
2023-04-04
出版日期:
2023-11-10
发布日期:
2023-11-16
通讯作者:
胡雪生(1976— ),男,博士,高级工程师,主要研究方向为石油化工过程强化技术研究开发;E-mail:huxuesheng@petrochina.com.cn。作者简介:
朱瑞松(1996— ),女,博士,工程师,主要研究方向为化工热力学和化工分离工程技术研究;E-mail:zhuruisong010@petrochina.com.cn。
基金资助:
ZHU Ruisong(), CAO Jing, LIU Taoran, LI Yingwen, GAO Fei, HU Xuesheng(
)
Received:
2023-04-04
Published:
2023-11-10
Online:
2023-11-16
摘要:
卤水锂矿是锂电池和电网储能材料的重要原料,也是国家战略性资源。锂产品市场供不应求的现状促使研究者们将锂提取的来源从常规的盐湖卤水扩展到地热卤水和油田卤水等非常规卤水。目前,全球常规卤水的提锂技术已经成功实现工业化应用,而非常规卤水的提锂技术仍然处于产业化开发阶段,尚有大量卤水锂资源未得到开发利用。基于非常规卤水中锂资源分布和组成等信息,剖析了非常规地热卤水和油田卤水直接提锂技术的研究现状,系统总结了沉淀、膜分离、溶剂萃取和吸附等主要提锂技术。此外,对目前国内外非常规卤水的提锂技术产业化现状进行了总结,并对未来非常规卤水提锂技术进行了展望,期望为地热卤水和油田卤水锂资源的绿色、高效开发提供借鉴与参考。
中图分类号:
朱瑞松, 曹靖, 刘陶然, 李应文, 高飞, 胡雪生. 全球非常规卤水的提锂技术及产业化研究进展[J]. 无机盐工业, 2023, 55(11): 1-11.
ZHU Ruisong, CAO Jing, LIU Taoran, LI Yingwen, GAO Fei, HU Xuesheng. Research progress of lithium extraction technology and industrialization of unconventional brines in global[J]. Inorganic Chemicals Industry, 2023, 55(11): 1-11.
表1
全球代表性非常规卤水组分含量[11-17]
卤水类型 | 国家(地区) | 地区名称 | ρ(Li+) | ρ(Na+) | ρ(K+) | ρ(Mg2+) | ρ(Ca2+) | ρ(B3+) | ρ(SiO2) | ρ(Cl-) | ρ(Br-) |
---|---|---|---|---|---|---|---|---|---|---|---|
地热 卤水 | 美国(加利福尼亚州)[ | 索尔顿湖 | 202 | 49 249 | 14 467 | 109 | 25 684 | 298 | 342 | 142 015 | 91 |
法国(阿尔萨斯)[ | Upper Rhine Graben | 173 | 28 140 | 3 195 | 131 | 7 225 | 40.8 | 201 | 58 559 | 216 | |
中国(西藏自治区)[ | 富锂温泉水 | 79.9 | 24 900 | 2 160 | 850 | 2 870 | — | — | 46 700 | — | |
油田 卤水 | 加拿大(阿尔伯特省)[ | Clearwater | 78.7 | 47 333 | 7 423 | 2 988 | 23 900 | 297 | 13 | 3 950 | — |
美国(阿尼肯色州)[ | Smackover | 423 | 72 500 | 7 100 | 2 243 | 29 300 | 358 | 36 | 125 184 | 4 276 | |
德国(阿尔特马克)[ | Rotliegend | 354 | 59 711 | 5 051 | 898 | 47 711 | — | — | 192 500 | 625 | |
中国(青海省)[ | 柴达木盆地 南翼山区域 | 254 | 84 920 | 7 660 | 1 380 | 15 750 | 5 080 | — | 170 300 | 46 | |
中国(湖北省)[ | 江汉盆地 | 52 | 103 660 | 9 220 | 30 | 16 400 | 910 | — | 198 800 | 202 | |
中国(四川省)[ | 四川盆地 | 66.3 | 93 700 | 48 950 | 3 040 | 2 290 | — | — | 196 750 | 4 800 |
表3
萃取法提锂技术的主要特征与萃取率汇总表[30-32,35-39]
原料来源 | 年份 | 萃取体系 | 协萃剂 | 萃取率/% |
---|---|---|---|---|
模拟金属盐溶液[ | 2021 | 冠醚二苯并-14-冠-4-醚;三正辛基氧化膦/二烷基磷酸脂 | 离子液体溶剂CYPHOSIL 109 | 80~85 |
含锂碱性卤水[ | 2017 | HBTA/HFTA/HTTA | TOPO/TBP | 94.50~99.50 |
盐湖卤水[ | 2017 | N,N-二甲基乙酰胺 | TBP | 八级:>96.00 |
模拟盐湖卤水[ | 2020 | TBP/FeCl3 | P507 | 85 |
模拟油田卤水[ | 2021 | N-戊基异壬酰胺 | 2,6,8-三甲 基-4-壬酮 | 单级:46.56(Li+);2.97(Ca2+) |
模拟油田卤水[ | 2021 | N-异辛基异戊酰胺 | 肉豆蔻酸乙 酯 | 单级:63.40(Li+);9.45(Ca2+) |
含LiCl稀溶液[ | 2017 | [P4444][BTMPP] | — | 三级:88.11~89.70 |
含LiCl稀溶液[ | 2018 | [N4444][DEHP] | — | 三级:93.30~94.20 |
表4
吸附法提锂技术的主要特征与吸附量汇总表[21,42-51]
原料来源 | 年份 | 吸附剂名称 | 原理 | pH | 吸附时间/h | 最大吸附量 |
---|---|---|---|---|---|---|
吉隆坡Sidoarjo地热卤水[ | 2016 | LiMn2O4 | 离子交换,物理吸附 | — | — | 68.35 mg/g |
吉隆坡Sidoarjo地热卤水[ | 2019 | H1.6Mn1.6O4 | 离子交换,物理吸附 | 12 | 19.0 | 43.80 mg/g |
四川威远气田水[ | 2000 | Li2TiO3 | 离子交换,物理吸附 | 9 | 240 | 25.34 mg/g |
模拟含锂水样[ | 2015 | Li4Ti5O12 | 离子交换,物理吸附 | 9.17 | 120 | 39.43 mg/g |
地热卤水[ | 2021 | Li2TiO3 | 离子交换,物理吸附 | 12 | 6 | 12.29 mg/g |
混合锂盐溶液[ | 2021 | LixAl2-LDH@SiO2 | 离子交换,物理吸附 | — | — | 18.00 mg/L |
察尔汗盐湖卤水[ | 2018 | Li/Al-LDHs | 离子交换,物理吸附 | — | 2 | 7.27 mg/g |
西藏某地热卤水[ | 2019 | PVC-HTO | 离子交换,物理吸附 | 12 | 12 | 11.35 mg/g |
地热卤水[ | 2020 | 粒状H4Mn5O12/壳聚糖 | 离子交换,物理吸附 | 12 | 24 | 8.98 mg/g |
波兰Rabka Zdroj地热卤水[ | 2018 | 天然斜发沸石 | 络合作用 | 5.5 | 3 | 5.00 mg/L |
表5
不同提锂技术的主要特征与优劣势比较[6-7]
技术名称 | 子类别 | 技术优势 | 技术劣势 | |
---|---|---|---|---|
沉淀法 | 无机盐类 | 碳酸盐、铝酸盐等 | 原理简单,适用于低镁卤水 | 后处理复杂、废液多,易造成环境污染 |
吸附法 | 有机吸附剂 | 离子交换树脂 | 工艺简单 | 亲水性差、锂选择性低、溶损率高 |
分子印迹聚合物 | 制备方法多样、吸附剂选择性高 | 吸附剂的再生效率有待提高 | ||
无机吸附剂 | 锂锰氧化物 | 吸附容量高、循环使用率高 | 易溶损、稳定性差 | |
锂钛氧化物 | 溶损率低、稳定性好 | 成本高 | ||
锂铝插层材料 | 成本低、环境友好 | 吸附率和吸附量有待提高 | ||
溶剂萃 取法 | 冠醚 | 萃取率高,可与其他物质结合进行萃取 | 成本高,真实溶液中萃取的选择性未被验证,真实溶液萃取前预处理标准不明 | |
多组分溶剂 | 萃取剂多样、成本可控、技术成熟 | 流程复杂,使用大量溶剂易造成环境污染 | ||
离子液体 | 溶解性能好、挥发度低、环境友好 | 成本高、溶剂损失率高、循环使用率低 | ||
膜分 离法 | 外加电场膜技术 | 电渗析 | 低能耗、绿色环保、产品品质高 | 维护成本高、离子膜耐久性差 |
膜电容 | 去离子高效、能耗低 | 电势系统过程优化待提升,使用真实卤水时解吸效率待提高 | ||
无外加电场膜技术 | 纳滤 | 对二价离子分离性能较好,技术成熟 | 普通纳滤膜对Na+、K+等单价离子的分离性能低,膜污染,耗材成本较高 | |
正渗透 | 低膜污染、低能源消耗 | 对离子选择性低、通量低 | ||
反渗透 | 脱盐率高、通量高 | 能耗高、膜污染、对离子选择性低 |
表6
地热或油田卤水提锂产业化现状[6,60-61]
国家 | 地点 | 卤水类型 | 运营商 | 规划产能情况 | 开发进程 | 直接提锂技术 |
---|---|---|---|---|---|---|
美国 | 加州索 尔顿 | 地热 | Berkshire Hathaway Energy(BHER) | 30万t/a LCE | 立法听证,2024—2025示范 | 离子交换工艺 |
Controlled Thermal Resources(CTR) | 30万t/a LCE | 离子交换工艺 | ||||
EnergySource Minerals | 1.9万t/a LiOH | 专利技术ILiAD(集成锂吸附解吸) | ||||
阿尼肯 色州 | 油田/深层 | Standard Lithium | 2.1万t/a LCE | 2025投产 | 自主研发工艺LiSTR+SiFT(陶瓷吸附+高压反渗透+结晶) | |
犹他州 | 油田/深层 | Anson Resources | 1.5万t/a LCE | 2024投产 | 离子交换+电化学法 | |
加拿大 | 阿尔伯 塔省 | 油田 | E3 Metals | 2.0万t/a LCE | 2025—2026投产 | 吸附法 |
Lithium Bank | — | 2023中试 | — | |||
德国 | 莱茵河 | 地热 | Vulcan Energy | 4.0万t/a LiOH | 2023示范 | 吸附法 |
法国 | Eramet | 2.4万t/a LCE | 2024投产 | 吸附法+膜分离法 |
1 | ALESSIA A, ALESSANDRO B, MARIA V G,et al.Challenges for sustainable lithium supply:A critical review[J].Journal of Clean- aner Production,2021,300:126954. |
2 | 陈泓林.能源革命将会导致碳酸锂长期供不应求[J].国际援助,2021,30:163-165. |
CHEN Honglin.The energy revolution will lead to a long-term shortage of lithium carbonate[J].International Aid,2021,30:163- 165. | |
3 | 江思宏,刘书生,王天刚,等.全球锂·钴·镍·锡·钾盐矿产资源储量评估报告[R].北京:中国地质调查局全球矿产资源战略研究中心,2021. |
4 | 赵彬彬,贺王娟.碳酸锂价格失守20万元/吨大关 锂电行业将加速洗牌[N].证券日报,2023-04-14(B02). |
5 | ABE Y.Rare metal series-current status of lithium resources:JOGMEC mineral resources report[R].Chiba:JOGMEC,2010. |
6 | WARREN I.Techno-economic analysis of lithium extraction from geothermal brines[R].Golden:National Renewable Energy Laboratory,2021. |
7 | STRINGFELLOW W, DOBSON P.Technology for lithium extraction in the context of hybrid geothermal power[C]// Proceedings of the 46th Workshop on Geothermal Reservoir Engineering.Stanford University,2021. |
8 | SAFARI S, LOTTERMOSER B G, ALESSI D S.Metal oxide sorbents for the sustainable recovery of lithium from unconventional resources[J].Applied Materials Today,2020,19:100638. |
9 | RADI M, ADIL AL-ISAWI O, ABDELGHAFAR A A,et al.Recent progress,economic potential,and environmental benefits of mineral recovery geothermal brine treatment systems[J].Arabian Journal of Geosciences,2022,15(9):1-27. |
10 | 徐凯,许建新,常政,等.柴达木盆地南翼山油田卤水水化学及氢氧同位素地球化学特征[J].盐湖研究,2021,29(4):43-51. |
XU Kai, XU Jianxin, CHANG Zheng,et al.Hydrochemical,hydrogen and oxygen isotopic characteristics of nanyishan oilfield brine,Qaidam basin[J].Journal of Salt Lake Research,2021,29(4):43-51. | |
11 | STRINGFELLOW W T, DOBSON P F.Technology for the recovery of lithium from geothermal brines[J].Energies,2021,14(20):6805. |
12 | SANJUAN B, MILLOT R, INNOCENT C,et al.Major geochemical characteristics of geothermal brines from the Upper Rhine Graben granitic basement with constraints on temperature and circulation[J].Chemical Geology,2016,428:27-47. |
13 | 刘成林,余小灿,袁学银,等.世界盐湖卤水型锂矿特征、分布规律与成矿动力模型[J].地质学报,2021,95(7):2009-2029. |
LIU Chenglin, YU Xiaocan, YUAN Xueyin,et al.Characteristics,distribution regularity and formation model of brine-type Li deposits in salt lakes in the world[J].Acta Geologica Sinica,2021,95(7):2009-2029. | |
14 | LAPPIN E.A report on Lithium exploration on the South-Central Alberta property near Red Deer[R].Alberta:1975293 Alberta Ltd,2019. |
15 | MOLDOVANYI E P, WALTER L M.Regional trends in water chemistry,smackover formation,southwest Arkansas:Geochemical and physical controls[J].AAPG Bulletin,1992,76:864-894. |
16 | LÜDERS V, PLESSEN B, ROMER R L,et al.Chemistry and isotopic composition of Rotliegend and Upper Carboniferous formation waters from the North German Basin[J].Chemical Geology,2010,276(3/4):198-208. |
17 | 穆延宗,乜贞,卜令忠,等.我国油(气)田水钾资源研究进展[J].地球科学进展,2016,31(2):147-160. |
MU Yanzong, NIE Zhen, BU Lingzhong,et al.Progress in study of potash resources of oil(gas) field brine in China[J].Advances in Earth Science,2016,31(2):147-160. | |
18 | 丁涛,郑绵平,张雪飞,等.盐湖卤水提锂技术及产业化发展[J].科技导报,2020,38(15):16-23. |
DING Tao, ZHENG Mianping, ZHANG Xuefei,et al.Development of lithium extraction technology and industrialization in brines of salt lake[J].Science & Technology Review,2020,38(15):16-23. | |
19 | 李洪普,郑绵平,侯献华,等.柴达木西部南翼山构造富钾深层卤水矿的控制因素及水化学特征[J].地球学报,2015,36(1):41-50. |
LI Hongpu, ZHENG Mianping, HOU Xianhua,et al.Control factors and water chemical characteristics of potassium-rich deep brine in nanyishan structure of western Qaidam Basin[J].Acta Geoscientica Sinica,2015,36(1):41-50. | |
20 | FLEXER V, BASPINEIRO C F, GALLI C I.Lithium recovery from brines:A vital raw material for green energies with a potential environmental impact in its mining and processing[J].Science of the Total Environment,2018,639:1188-1204. |
21 | IGHALO J O, AMAKU J F, OLISAH C,et al.Utilisation of adsorption as a resource recovery technique for lithium in geothermal water[J].Journal of Molecular Liquids,2022,365:120107. |
22 | BERTHOLD C E, BAKER D H.Lithium recovery from geothermal fluids[J].Lithium Resources and requirements,1976. |
23 | SCHULTZE L E, BAUER D J.Recovering lithium chloride from a geothermal brine[R].Nevada:United States Department of the Interior/Bureau of Mines,1984. |
24 | YOSHINAGA T, KAWANO K, IMOTO H.Basic study on lithium recovery from lithium containing solution[J].Bulletin of the Che- mical Society of Japan,1986,59(4):1207-1213. |
25 | 李洪普.柴达木盆地深层含钾卤水成矿与利用研究[M].武汉:中国地质大学出版社,2021. |
26 | 潘磊,李龙涛,唐耀春.高钙油田卤水富锂工艺研究[J].无机盐工业,2019,51(2):42-44. |
PAN Lei, LI Longtao, TANG Yaochun.Research on Li+ enriching technology in oilfield brine with high Ca2+ [J].Inorganic Chemicals Industry,2019,51(2):42-44. | |
27 | GOLDBERG V, WINTER D, NITSCHKE F,et al.The potential of raw material extraction from thermal brines-successful milestones of the BrineMine project[J].Oil Gas European Magazine,2021(01/2021):26-33. |
28 | SWAIN B.Separation and purification of lithium by solvent extraction and supported liquid membrane,analysis of their mechanism:A review[J].Journal of Chemical Technology & Biotechnology,2016,91(10):2549-2562. |
29 | CZECH B P, BABB D A,SON B,et al.Functionalized 13-crown-4,14-crown-4,15-crown-4,and 16-crown-4 compounds:Synthesis and lithium ion complexation[J].The Journal of Organic Chemistry,1984,49(25):4805-4810. |
30 | 李丽娟,张利诚,彭小五,等.基于混合澄清槽的从含锂碱性卤水中提取锂的工艺:中国,107937734B[P].2020-04-28. |
31 | SU Hui, LI Zheng, ZHANG Jian,et al.Combining selective extraction and easy stripping of lithium using a ternary synergistic solvent extraction system through regulation of Fe3+ coordination[J].ACS Sustainable Chemistry & Engineering,2020,8(4):1971-1979. |
32 | 时东,李丽娟,宋富根,等.N523-TBP混合萃取体系从盐湖卤水中萃取锂的机理研究[J].盐湖研究,2017,25(1):57-63. |
SHI Dong, LI Lijuan, SONG Fugen,et al.Mechanism study of extracting lithium from brine with N523-TBP mixed extraction system[J].Journal of Salt Lake Research,2017,25(1):57-63. | |
33 | 朱慎林,朴香兰,缑泽明.中性磷类萃取剂从卤水中萃取锂的研究[J].清华大学学报(自然科学版),2000,40(10):47-50. |
ZHU Shenlin, PIAO Xianglan, GOU Zeming.Extraction of lithium from brine with neutral organophosphorous solvents[J].Journal of Tsinghua University(Science and Technology),2000,40(10):47-50. | |
34 | 张利诚.HBTA/TOPO萃取体系从碱性溶液中萃取锂的机理及工艺研究[D].西宁:中国科学院大学(中国科学院青海盐湖研究所),2019. |
ZHANG Licheng.Mechanism and process study on lithium separation from alkaline solution using HBTA/TOPO extraction system[D].Xining:Qinghai Institute of Salt Lakes,Chinese Academy of Sciences,2019. | |
35 | 杨立新,李海博,刘长,等.用仲酰胺/烷基酮复合溶剂从含钙卤水中分离钙提取锂的萃取体系、萃取方法和其应用:中国,110643813B[P].2021-05-04. |
36 | 杨立新,田翔,刘长,等.用仲酰胺/烷基酯复合溶剂从含钙卤水中分离钙提取锂的萃取体系、萃取方法和其应用:中国,110643834B[P].2021-05-25. |
37 | TORREJOS R E C, NISOLA G M, SONG H S,et al.Liquid-liquid extraction of lithium using lipophilic dibenzo-14-crown-4 ether carboxylic acid in hydrophobic room temperature ionic liquid[J].Hydrometallurgy,2016,164:362-371. |
38 | SHI Chenglong, JING Yan, XIAO Jiang,et al.Liquid-liquid extraction of lithium using novel phosphonium ionic liquid as an extractant[J].Hydrometallurgy,2017,169:314-320. |
39 | ZHAO Xu, WU Haihong, DUAN Mengshan,et al.Liquid-liquid extraction of lithium from aqueous solution using novel ionic liquid extractants via COSMO-RS and experiments[J].Fluid Phase Equilibria,2018,459:129-137. |
40 | SHI Chenglong, JING Yan, XIAO Jiang,et al.Solvent extraction of lithium from aqueous solution using non-fluorinated functionalized ionic liquids as extraction agents[J].Separation and Purification Technology,2017,172:473-479. |
41 | MOLNAR R, WEBER D S, BURGA E,et al.Clayton Valley Lithium Project[R].Nevada:Pure Energy Minerals,2018. |
42 | NOEROCHIM L, SAPPUTRA G P A, WIDODO A.Lithium manganese oxide(LiMn2O4) nanoparticles synthesized by hydrothermal method as adsorbent of lithium recovery process from geothermal fluid of Lumpur Sidoarjo[C]//Proceedings of International Conference on Advanced Materials Science & Technology.AIP Publishing LLC,2016. |
43 | QIAN Fangren, GUO Min, QIAN Zhiqiang,et al.Highly lithium adsorption capacities of H1.6Mn1.6O4 ion-sieve by ordered array structure[J].ChemistrySelect,2019,4(34):10157-10163. |
44 | 钟辉.偏钛酸型锂离子交换剂的交换性质及从气田卤水中提锂[J].应用化学,2000,17(3):307-309. |
ZHONG Hui.Property of H2TiO3 type ion exchangers and extraction of lithium from brine of natural gas wells[J].Chinese Journal of Applied Chemistry,2000,17(3):307-309. | |
45 | MOAZENI M, HAJIPOUR H, ASKARI M,et al.Hydrothermal synthesis and characterization of titanium dioxide nanotubes as novel lithium adsorbents[J].Materials Research Bulletin,2015,61:70-75. |
46 | CHEN Shangqing, CHEN Zishen, WEI Zhenwei,et al.Titanium-based ion sieve with enhanced post-separation ability for high performance lithium recovery from geothermal water[J].Chemical Engineering Journal,2021,410:128320. |
47 | LEE Yongju, CHA J H, JUNG D Y.Selective lithium adsorption of silicon oxide coated lithium aluminum layered double hydroxide nanocrystals and their regeneration[J].Chemistry-an Asian Journal,2021,16(8):974-980. |
48 | ZHONG Jing, LIN Sen, YU Jianguo.Li+ adsorption performance and mechanism using lithium/aluminum layered double hydroxides in low grade brines[J].Desalination,2021,505:114983. |
49 | LIN Hongyu, YU Xiaoping, LI Mingli,et al.Synthesis of polyporous ion-sieve and its application for selective recovery of lithium from geothermal water[J].ACS Applied Materials & Interfaces,2019,11(29):26364-26372. |
50 | WANG Hongshuang, CUI Jinjie, LI Mingli,et al.Selective recovery of lithium from geothermal water by EGDE cross-linked spherical CTS/LMO[J].Chemical Engineering Journal,2020,389:124410. |
51 | WIŚNIEWSKA M, FIJAŁKOWSKA G, OSTOLSKA I,et al.Investigations of the possibility of lithium acquisition from geothermal water using natural and synthetic zeolites applying poly(acrylic acid)[J].Journal of Cleaner Production,2018,195:821-830. |
52 | MCEACHERN P M, WONG N, ANDRIC M.Method and apparatus for the treatment of water with the recovery of metals:US,20200299805[P].2020-09-24. |
53 | RAZMJOU A, ASADNIA M, HOSSEINI E,et al.Design principles of ion selective nanostructured membranes for the extraction of lithium ions[J].Nature Communications,2019,10:5793. |
54 | ZHANG Ye, WANG Li, SUN Wei,et al.Membrane technologies for Li+/Mg2+ separation from salt-lake brines and seawater:A comprehensive review[J].Journal of Industrial and Engineering Chemistry,2020,81:7-23. |
55 | SOMRANI A, HAMZAOUI A H, PONTIE M.Study on lithium separation from salt lake brines by nanofiltration (NF) and low pressure reverse osmosis(LPRO)[J].Desalination,2013,317:184-192. |
56 | WEN Xianming, MA Peihua, ZHU Chaoliang,et al.Preliminary study on recovering lithium chloride from lithium-containing waters by nanofiltration[J].Separation and Purification Technology,2006,49(3):230-236. |
57 | JIANG Chenxiao, CHEN Binglun, XU Ziang,et al.Ion-“distillation” for isolating lithium from lake brine[J].AIChE Journal,2022,68(6):e17710. |
58 | INTARANONT N, GARCIA-ARAEZ N, HECTOR A L,et al.Selective lithium extraction from brines by chemical reaction with battery materials[J].Journal of Materials Chemistry A,2014,2(18):6374-6377. |
59 | MROCZEK E, DEDUAL G, GRAHAM D,et al.Lithium extraction from wairakei geothermal fluid using electrodialysis[C]//Proceedings World Geothermal Congress 2015.Melbourne,Australia,2015:1-6. |
60 | SILVIA P, KELLEY R E, CASTANEDA S,et al.Blue Ribbon Commission on Lithium Extraction in California(CEC-300-2022-009-D)[R].California:California Energy Commission,2022. |
61 | ALSTON K, WALDMAN M, BLUNDEN J,et al.Building lithium valley-opportunities and challenges ahead for developing California’s battery manufacturing ecosystem[R].California:New Energy Nexus,2020. |
62 | MARSTON C R, GARSKA M J.Process for selective adsorption and recovery of lithium from natural and synthetic brines:US,11365128[P].2022-06-21. |
63 | ALAN OHNSMA.美国加州兴起提锂热,但成败取决于对有毒盐水的处理[EB/OL].(2022-09-02)[2022-11-04].https://www.forbeschina.com/innovation/innovation/61708. |
64 | VULCAN ENERGIE RESSOURCEN GMBH.Vulcan zero carbon lithium™ project phase one DFS presentation 2023[EB/OL].(2023-03-13)[2023-03-01].https://v-er.eu/wp-content/uploads/2023/03/Vulcan-Energy-DFS-presentation-2023-FINAL.pdf. |
65 | 尚鹏,杨建元,袁寰宇,等.一种掺杂富锂偏钛酸锂吸附材料及其制备方法:中国,110860270A[P].2020-03-06. |
66 | 李晓平.深耕盐湖提锂 厦企闯出新路[N].厦门日报,2023-01-21. |
67 | 付春,储政,江洋洋,等.一种油田地下卤水提锂制备碳酸锂工艺:中国,113511663A[P].2021-10-19. |
68 | 石建芬,黄华.江汉卤水资源评价与综合利用引发广泛关注[EB/OL].(2019-06-06)[2023-01-02].http://www.sinopecnews.com.cn/news/content/2019-06/06/content_1750767.htm. |
69 | 陈新军,李倩文.江汉盆地卤水锂资源特征及开发利用前景[J].国土资源情报,2021(11):44-49. |
CHEN Xinjun, LI Qianwen.The characteristics and exploitation prospect of brine lithium in Jianghan Basin[J].Land and Resources Information,2021(11):44-49. | |
70 | 林业,王晓雪.西南油气田:“天然气+新能源”探索绿色发展新路径[EB/OL].(2022-09-02) [2023-09-30].http://news.cnpc.com.cn/system/2022/09/02/030078792.shtml. |
71 | 彭刚.全面提速!西南油气田加快形成“天然气+新能源”新格局[N].中国石油报,2023-03-14. |
[1] | 孔令杰, 李光壁, 谢佳豪, 杨新辉, 白晓琴. 盐湖卤水锂提取技术研究进展[J]. 无机盐工业, 2025, 57(1): 14-26. |
[2] | 许有, 马路祥, 海春喜, 董生德, 许琪, 贺欣, 潘稳丞, 高亚文, 谌炬, 孙艳霞, 周园. 钠离子电池煤基硬碳负极材料的研究进展及产业化挑战[J]. 无机盐工业, 2024, 56(11): 30-38. |
[3] | 陈天东, 赵光钊, 海春喜, 董生德, 贺欣, 许琪, 冯航, 袁少雄, 马路祥, 周园. 包覆与掺杂对富锂锰基材料的改性研究及产业化进展[J]. 无机盐工业, 2023, 55(9): 1-8. |
[4] | 魏春光,梁燕,李曈,吕伟. 水系锌离子电池的研究和产业化进展[J]. 无机盐工业, 2022, 54(3): 18-22. |
[5] | 马珍. 盐湖锂资源高效分离提取技术研究进展[J]. 无机盐工业, 2022, 54(10): 22-29. |
[6] | 乜贞, 伍倩, 丁涛, 卜令忠, 王云生, 余疆江, 侯献华. 中国盐湖卤水提锂产业化技术研究进展[J]. 无机盐工业, 2022, 54(10): 1-12. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|