1 |
郝百川, 李子越, 贾东方, 等. 含钛高炉渣的综合利用[J]. 矿产综合利用, 2020(6):1-6.
|
|
HAO Baichuan, LI Ziyue, JIA Dongfang, et al. Comprehensive utilization of blast furnace slag containing titanium[J]. Multipurpose Utilization of Mineral Resources, 2020(6):1-6.
|
2 |
向兰, 王明亮, 杨卓颖, 等. 一种由含钛的高炉渣制备高纯二氧化钛的方法: 中国, 112047377A[P]. 2021-11-23.
|
3 |
J.A. 迪安. 兰氏化学手册[M].魏俊发,译. 2版. 北京: 科学出版社, 2003.
|
4 |
张益都. 硫酸法钛白粉生产技术创新[M]. 北京: 化学工业出版社, 2010.
|
5 |
ZHANG Wu, Changrui OU, YUAN Zhigang. Precipitation and growth behaviour of metatitanic acid particles from titanium sulfate solution[J]. Powder Technology, 2017, 315:31-36.
|
6 |
ZENG Fanbo, LUO Dongmei, ZHANG Zhao, et al. Study on the behavior of sulfur in hydrolysis process of titanyl sulfate solution[J]. Journal of Alloys and Compounds, 2016, 670:249-257.
|
7 |
TIAN Congxue. A novel preparation of high purity TiO2 from industrial low concentration TiOSO4 solution via short sulfate process[J]. Materials Science in Semiconductor Processing, 2022, 137:106166.
|
8 |
邹建新, 王荣凯. 钛渣替代钛矿制备钛白酸解试验研究[J]. 现代化工, 2006, 26(S1):273-276.
|
|
ZOU Jianxin, WANG Rongkai. Study on acid digesting titania slag during titanium dioxide production[J]. Modern Chemical Industry, 2006, 26(S1):273-276.
|
9 |
廖鑫, 杨绍利, 马兰, 等. 以钛精矿和钛渣为原料制备硫酸法钛白粉的对比分析[J]. 无机盐工业, 2019, 51(10):7-11.
|
|
LIAO Xin, YANG Shaoli, MA Lan, et al. Comparison and analysis of sulfuric acid process titanium dioxide prepared with titanium concentrate and titanium slag as raw materials respectively[J]. Inorganic Chemicals Industry, 2019, 51(10):7-11.
|
10 |
陈朝华, 刘长河. 钛白粉生产及应用技术[M]. 北京: 化学工业出版社, 2006.
|
11 |
LOAN T T, HUONG V H, HUYEN N T, et al. Anatase to rutile phase transformation of iron-doped titanium dioxide nanoparticles:The role of iron content[J]. Optical Materials, 2021, 111:110651.
|
12 |
WERMINK W N, VERSTEEG G F. The oxidation of Fe(Ⅱ) in acidic sulfate solutions with air at elevated pressures.part 2.influence of H2SO4 and Fe(Ⅲ)[J]. Industrial & Engineering Chemistry Research, 2017, 56(14):3789-3796.
|
13 |
DONG Chunying, PANG Yuang, CHEN Yan, et al. Fe-Ti bimetals catalyst derived from biowaste for highly efficient persulfate activation:Performance and mechanisms[J]. Process Safety and Environmental Protection, 2022, 168:654-667.
|
14 |
左定财, 钟永科, 范会, 等. 铁掺杂介孔水合TiO2光催化剂性能研究[J]. 化工新型材料, 2020, 48(9):207-211.
|
|
ZUO Dingcai, ZHONG Yongke, FAN Hui, et al. Influence of mesoporous hydrogen TiO2 doped with Fe3+ on its photocatalytic activity[J]. New Chemical Materials, 2020, 48(9):207-211.
|
15 |
杨颖. 工业钛液制备铁掺杂硫酸化多孔二氧化钛及其机理研究[D]. 成都: 成都理工大学, 2012.
|
|
YANG Ying. Study on preparation and mechanism of Fe-doped sulfated mesoporous titania from industrial titanyl sulfate soluti-on[D]. Chengdu: Chengdu University of Technology, 2012.
|
16 |
苏淑芬, 杨发福. 手持技术探究离子浓度对沉淀溶解平衡的影响:同离子效应和盐效应[J]. 化学教育(中英文), 2023, 44(1):107-112.
|
|
SU Shufen, YANG Fafu. Exploring influence of ion concentration on precipitation-dissolution equilibrium based on handheld technology:Co-ionic effect and salt effect[J]. Chinese Journal of Che-Education mical , 2023, 44(1):107-112.
|
17 |
GRZMIL B, GRELA D, KIC B, et al. The influence of admixtures on the course of hydrolysis of titanyl sulfate[J]. PJCT, 2008, 10(3):4-12.
|
18 |
KARTHIK P, VINESH V, MAHAMMED SHAHEER A R, et al. Self-doping of Ti3+ in TiO2 through incomplete hydrolysis of titanium(Ⅳ) isopropoxide:An efficient visible light sonophotocatalyst for organic pollutants degradation[J]. Applied Catalysis A:General, 2019, 585:117208.
|
19 |
KOMARAIAH D, RADHA E, KALARIKKAL N, et al. Structural,optical and photoluminescence studies of sol-gel synthesized pure and iron doped TiO2 photocatalysts[J]. Ceramics International, 2019, 45(18):25060-25068.
|
20 |
SCHERRER P. Bestimmung der gross under linneren strukur von kolloidteilchen mittels rontgenstrahlen[J]. Gottinger Nachr Math Phys, 1918, 2:98-100.
|
21 |
LI Hexing, LI Guisheng, ZHU Jian, et al. Preparation of an active SO4 2-/TiO2 photocatalyst for phenol degradation under supercritical conditions[J]. Journal of Molecular Catalysis A:Chemical, 2005, 226(1):93-100.
|
22 |
PRADUBKORN P, MAENSIRI S, SWATSITANG E, et al. Preparation and characterization of hollow TiO2 nanospheres:The effect of Fe3+ doping on their microstructure and electronic structure[J]. Current Applied Physics, 2020, 20(1):178-185.
|
23 |
RATHORE N, KULSHRESHTHA A, SHUKLA R K, et al. Defect-mediated optical properties of Fe-substituted TiO2 nanoparticl-es[J]. International Journal of Applied Ceramic Technology, 2022, 19(3):1766-1778.
|
24 |
JAFARI A J, MOSLEMZADEH M. Synthesis of Fe-doped TiO2 for photocatalytic processes under UV-visible light:Effect of preparation methods on crystal size a systematic review study[J]. Comments on Inorganic Chemistry, 2020, 40:327-346.
|
25 |
SANTOS R DA S, FARIA G A, GILES C, et al. Iron insertion and hematite segregation on Fe-doped TiO2 nanoparticles obtained from sol-gel and hydrothermal methods[J]. ACS Applied Materials & Interfaces, 2012, 4(10):5555-5561.
|
26 |
梁英教车荫昌. 无机物热力学数据手册[M]. 沈阳: 东北大学出版社, 1993.
|
27 |
杨显万. 高温水溶液热力学数据计算手册[M]. 北京: 冶金工业出版社, 1983.
|
28 |
杨卓颖, 杨帆, 易美桂, 等. 含镁铝杂质硫酸氧钛溶液水热水解规律[J]. 无机盐工业, 2021, 53(12):113-116.
|
|
YANG Zhuoying, YANG Fan, YI Meigui, et al. Rule of hydrothermal hydrolysis of Mg/Al-bearing TiOSO4 solution[J]. Inorganic Chemicals Industry, 2021, 53(12):113-116.
|