无机盐工业 ›› 2022, Vol. 54 ›› Issue (5): 11-18.doi: 10.19964/j.issn.1006-4990.2021-0756
收稿日期:
2021-12-16
出版日期:
2022-05-10
发布日期:
2022-05-31
作者简介:
石涵(1982— ),男,硕士,从事油气田生产工艺、油水井生产、水下生产设施运维研究;E-mail:
SHI Han1(),YUAN Biao2(
),SHEN Peng2
Received:
2021-12-16
Published:
2022-05-10
Online:
2022-05-31
摘要:
天然气在进入管网输送之前必须经过脱水处理,目前常用的天然气脱水方法主要有冷干法、液体吸收法和固体吸附法。用于天然气脱水的固体吸附剂主要包括分子筛、氧化铝、介孔二氧化硅和金属有机框架材料(MOFs)等。随着更多海上气田的勘探开发,分子筛和氧化铝等传统吸附剂已无法满足对大量天然气的净化需求,需要使用具有更高负载能力的吸附剂。介孔二氧化硅和MOFs具有高化学稳定性、低密度、高孔隙度的优点,且使用寿命长,避免了频繁更换,作为天然气脱水吸附剂具有潜在优势。围绕高比表面积、孔体积、亲水性和再生能力等综述了介孔二氧化硅和金属有机框架材料(MOFs)在天然气脱水方面的研究进展。介孔二氧化硅具有良好的亲水性和机械稳定性,可在高压力范围内使用,提升处理装置的效率。然而介孔二氧化硅主要是通过溶胶-凝胶法合成,老化时间较长,且传统的蒸发干燥法无法保持完全凝胶的结构。未来有望通过超临界流体干燥法获得具有更好物化性质和孔结构的介孔二氧化硅,进一步提高介孔二氧化硅的吸附能力。MOFs作为无机物和有机物结合形成的多孔材料,具有高度规则的孔结构和可调的性质,且金属离子与配体官能团的自由电子对之间的化学或物理相互作用,使其具有较高的天然气吸附脱水效率和优异的再生循环性能。最后指出,需要进一步研究复杂工况下的MOFs吸附脱水能力、长周期运行稳定性以及高压工况、造粒及不同分离过程(变压吸附和变温吸附)对MOFs的影响,并开发MOFs低成本规模化制备技术实现工业化应用。
中图分类号:
石涵,袁标,沈鹏. 新型无机固体吸附剂在天然气脱水领域研究进展[J]. 无机盐工业, 2022, 54(5): 11-18.
SHI Han,YUAN Biao,SHEN Peng. Research progress on new inorganic solid adsorbents in field of natural gas dehydration[J]. Inorganic Chemicals Industry, 2022, 54(5): 11-18.
表2
介孔二氧化硅和MOFs的吸附脱水能力对比
样品 | 操作条件 | 吸附能力/ (g·g-1) | ||
---|---|---|---|---|
室温湿度/% | 温度/℃ | p/p0 | ||
F127-SiO2[ | 84 | 25 | 0.9 | 0.45 |
Brij56-SiO2[ | 84 | 25 | 0.9 | 0.25 |
SBA-15[ | — | 20 | 0.9 | 0.084 |
SBA-15[ | 90 | 35 | 0.9 | 0.54 |
SiO2/CaCl2[ | 60 | 40 | 0.9 | 0.47 |
AlFFIVE-1-Ni (KAUST-8)[ | 95 | 35 | 0.9 | 0.27 |
MOF-303[ | 94 | 15 | 0.3 | 0.48 |
HKUST-1[ | — | 25 | 0.9 | 0.55 |
MIL-100(Fe)[ | — | 25 | 0.9 | 0.81 |
MIL-101[ | — | 25 | 0.9 | 1.28 |
DUT-4[ | — | 25 | 0.9 | 0.28 |
ZIF-8[ | — | 25 | 0.9 | 0.02 |
MIL-101[ | — | 25 | 0.9 | 1.2 |
MIL-101(Cr)[ | 60 | 30 | 0.57 | 1.5 |
MIL-101(Cr)-NH2[ | — | 20 | 0.4 | 1.06 |
MOF-801[ | 100 | 25 | 0.9 | 0.05 |
MOF-808[ | 100 | 25 | 0.9 | 0.08 |
MOF-841[ | 100 | 25 | 0.9 | 0.07 |
MIL-101(Cr)/CaCl2[ | — | 25 | 0.9 | 2.2 |
1 | NEAGU M, CURSARU D L.Technical and economic evaluations of the triethylene glycol regeneration processes in natural gas dehydration plants[J].Journal of Natural Gas Science and Engineering,2017,37:327-340. |
2 | KONG Zongyang, MAHMOUD A, LIU Shaomin,et al.Revamping existing glycol technologies in natural gas dehydration to improve the purity and absorption efficiency:Available methods and recent developments[J].Journal of Natural Gas Science and Engineering,2018,56:486-503. |
3 | 戴国华,桑军,万宇飞.天然气超音速分离脱水技术研究进展[J].石油化工高等学校学报,2021,34(1):63-71. |
DAI Guohua, SANG Jun, WAN Yufei.Research progress of natural gas dehydration with supersonic separator[J].Journal of Petrochemical Universities,2021,34(1):63-71. | |
4 | 周建,陈文峰,于成龙,等.超音速天然气脱水工艺的应用[J].石油和化工设备,2020,23(10):113-115. |
ZHOU Jian, CHEN Wenfeng, YU Chenglong,et al.Application of super sonic natural gas dehydration process[J].Petro & Chemical Equipment,2020,23(10):113-115. | |
5 | RAHIMPOUR M R, SAIDI M, SEIFI M.Improvement of natural gas dehydration performance by optimization of operating conditions:A case study in Sarkhun gas processing plant[J].Journal of Natural Gas Science and Engineering,2013,15:118-126. |
6 | 杨秘.节流制冷技术在海上平台天然气脱水系统中的应用[J].化学工程与装备,2020(11):78-79. |
YANG Mi.Application of throttling refrigeration technology in natural gas dehydration system of offshore platform [J].Chemical Engineering & Equipment,2020(11):78-79. | |
7 | MOKHATAB S, POE W A.Handbook of natural gas transmission & processing[M].Second edition.USA:Elsevier,2012,1-802. |
8 | LAVRENKO V A, PODCHERNYAEVA I A, SHCHUR D V,et al.Features of physical and chemical adsorption during interaction of polycrystalline and nanocrystalline materials with gases[J].Powder Metallurgy and Metal Ceramics,2018,56(9/10):504-511. |
9 | GHIASI M M, BAHADORI A, ZENDEHBOUDI S.Estimation of the water content of natural gas dried by solid calcium chloride dehydrator units[J].Fuel,2014,117:33-42. |
10 | 邹龙华,赵凌霜,李怀洲,等.天然气分子筛脱水装置吸附塔设计探讨[J].石油化工建设,2021,43(S2):116-118. |
ZOU Longhua, ZHAO Lingshuang, LI Huaizhou,et al.Discussion on design of adsorption tower of natural gas molecular sieve dehydration unit[J].Petroleum and Chemical Construction,2021,43(S2):116-118. | |
11 | FARAG H A A, EZZAT M M, AMER H,et al.Natural gas dehydration by desiccant materials[J].Alexandria Engineering Journal,2011,50(4):431-439. |
12 | SANTOS M G R S, CORREIA L M S, DE MEDEIROS J L,et al.Natural gas dehydration by molecular sieve in offshore plants:Impact of increasing carbon dioxide content[J].Energy Conversion and Management,2017,149:760-773. |
13 | SHIRAZIAN S, ASHRAFIZADEH S N.Synthesis of substrate⁃modified LTA zeolite membranes for dehydration of natural gas[J].Fuel,2015,148:112-119. |
14 | 袁亚伟,李勇.ZSM-5分子筛吸附剂应用于污染治理的研究进展[J].无机盐工业,2019,51(10):18-21. |
YUAN Yawei, LI Yong.Research progress of ZSM-5 molecular sieve adsorbents used in pollution control[J].Inorganic Chemicals Industry,2019,51(10):18-21. | |
15 | KIM Y T, JUNG K D, PARK E D.Gas-phase dehydration of glycerol over silica⁃alumina catalysts[J].Applied Catalysis B:Environmental,2011,107(1/2):177-187. |
16 | SERBEZOV A, MOORE J D, WU Yaqin.Adsorption equilibrium of water vapor on selexsorb-CDX commercial activated alumina adsorbent[J].Journal of Chemical & Engineering Data,2011,56(5):1762-1769. |
17 | HANIF A, DASGUPTA S, NANOTI A.High temperature CO2 adsorption by mesoporous silica supported magnesium aluminum mixed oxide[J].Chemical Engineering Journal,2015,280:703- |
710 | |
18 | LAKHI K S, CHA W S, CHOY J H,et al.Synthesis of mesoporous carbons with controlled morphology and pore diameters from SBA-15 prepared through the microwave⁃assisted process and their CO2 adsorption capacity[J].Microporous and Mesoporous Materials,2016,233:44-52. |
19 | RUSSELL B A, MIGONE A D.Low temperature adsorption study of CO2 in ZIF-8[J].Microporous and Mesoporous Materials,2017,246:178-185. |
20 | LIU Defei, WU Yongbiao, XIA Qibin,et al.Experimental and molecular simulation studies of CO2 adsorption on zeolitic imidazolate frameworks:ZIF-8 and amine⁃modified ZIF-8[J].Adsorption,2013,19(1):25-37. |
21 | SANTOS K M C, MENEZES T R, OLIVEIRA M R,et al.Natural |
gas dehydration by adsorption using MOFs and silicas:A revi⁃ | |
ew[J].Separation and Purification Technology,2021,276.Doi:10 . | |
1016/j.seppur.2021.119409. | |
22 | GANDHIDASAN P, AL-FARAYEDHI A A, AL-MUBARAK A A.Dehydration of natural gas using solid desiccants[J].Energy,2001,26(9):855-868. |
23 | NEISHABORI SALEHI R, SHARIFNIA S, RAHIMPOUR F.Natural gas upgrading by selective separation on zeotype adsorbents[J].Journal of Natural Gas Science and Engineering,2018,54:37-46. |
24 | TAGLIABUE M, FARRUSSENG D, VALENCIA S,et al.Natural gas treating by selective adsorption:Material science and chemical engineering interplay[J].Chemical Engineering Journal,2009, |
155(3):553-566. | |
25 | MESGARIAN R, HEYDARINASAB A, RASHIDI A,et al.Adsorption and growth of water clusters on UiO-66 based nanoadsorbents:A systematic and comparative study on dehydration of natural gas[J].Separation and Purification Technology,2020, |
239 | Doi:10.1016/j.seppur.2020.116512 . |
26 | CADIAU A, BELMABKHOUT Y, ADIL K,et al.Hydrolytically stable fluorinated metal⁃organic frameworks for energy⁃efficient dehydration[J].Science,2017,356(6339):731-735. |
27 | FURUKAWA H, GÁNDARA F, ZHANG Yuebiao,et al.Water adsorption in porous metal⁃organic frameworks and related materials[J].Journal of the American Chemical Society,2014,136(11):4369-4381. |
28 | SALIBA S, RUCH P, VOLKSEN W,et al.Combined influence of pore size distribution and surface hydrophilicity on the water adsorption characteristics of micro- and mesoporous silica[J].Microporous and Mesoporous Materials,2016,226:221-228. |
29 | 孙振海,李滨,郭春垒,等.介孔二氧化硅合成及其吸附分离性能研究[J].无机盐工业,2021,53(7):68-72. |
SUN Zhenhai, LI Bin, GUO Chunlei,et al.Study on synthesis of mesoporous silica and its adsorption and separation properties[J].Inorganic Chemicals Industry,2021,53(7):68-72. | |
30 | LI Haibin, AI Minghuan, LIU Baizhan,et al.Water vapor sorption on surfactant⁃templated porous silica xerogels[J].Microporous and Mesoporous Materials,2011,143(1):1-5. |
31 | MAAZ S, ROSE M, PALKOVITS R.Systematic investigation of the pore structure and surface properties of SBA-15 by water vapor physisorption[J].Microporous and Mesoporous Materials,2016,220:183-187. |
32 | CENTINEO A, NGUYEN H G T, ESPINAL L,et al.An experimental and modelling study of water vapour adsorption on SBA-15[J].Microporous and Mesoporous Materials,2019,282:53- |
72 | |
33 | BU Xianbiao, WANG Lingbao, HUANG Yuanfeng.Effect of pore size on the performance of composite adsorbent[J].Adsorption,2013,19(5):929-935. |
34 | FATHIEH F, KALMUTZKI M J, KAPUSTIN E A,et al.Practical water production from desert air[J].Science Advances,2018,4(6).Doi:10.1126/sciadv.aat3198 . |
35 | KÜSGENS P, ROSE M, SENKOVSKA I,et al.Characterization of metal⁃organic frameworks by water adsorption[J].Microporous and Mesoporous Materials,2009,120(3):325-330. |
36 | AKIYAMA G, MATSUDA R, SATO H,et al.Effect of functional groups in MIL-101 on water sorption behavior[J].Microporous and Mesoporous Materials,2012,157:89-93. |
37 | SEO Y K, YOON J W, LEE J S,et al.Energy⁃efficient dehumidification over hierachically porous metal⁃organic frameworks as advanced water adsorbents[J].Advanced Materials,2012,24(6):806-810. |
38 | KHUTIA A, RAMMELBERG H U, SCHMIDT T,et al.Water sorption cycle measurements on functionalized MIL-101Cr for heat transformation application[J].Chemistry of Materials,2013,25(5):790-798. |
39 | ELSAYED E, ANDERSON P, AL-DADAH R,et al.MIL-101(Cr)/calcium chloride composites for enhanced adsorption cooling and water desalination[J].Journal of Solid State Chemistry,2019,277:123-132. |
40 | THOMMES M, KANEKO K, NEIMARK A V,et al.Physisorption of gases,with special reference to the evaluation of surface area and pore size distribution(IUPAC Technical Report)[J].Pure and Applied Chemistry,2015,87(9/10):1051-1069. |
41 | MALEKI H, DURÃES L, PORTUGAL A.An overview on silica aerogels synthesis and different mechanical reinforcing strategi⁃ |
es[J].Journal of Non-Crystalline Solids,2014,385:55-74. | |
42 | IVANOVA M, KARETH S, SPIELBERG E T,et al.Silica ionogels synthesized with imidazolium based ionic liquids in presence of supercritical CO2 [J].The Journal of Supercritical Fluids,2015,105:60-65. |
43 | WANG Ding, MCLAUGHLIN E, PFEFFER R,et al.Adsorption of oils from pure liquid and oil⁃water emulsion on hydrophobic silica aerogels[J].Separation and Purification Technology,2012,99:28-35. |
44 | KON’KOVA T V, GORDIENKO M G, MEN’SHUTINA N V,et al.Adsorption properties of aerosilicagels prepared by drying in a supercritical carbon dioxide medium[J].Russian Journal of Physical Chemistry B,2018,12(7):1120-1124. |
45 | OLIVEIRA R J, DE CONTO J F, OLIVEIRA M R,et al.CO2/CH4 adsorption at high⁃pressure using silica-APTES aerogel as adsorbent and near infrared as a monitoring technique[J].Journal of CO2 Utilization,2019,32:232-240. |
46 | RUEDA M, SANZ-MORAL L M, NIETO-MÁRQUEZ A,et al.Production of silica aerogel microparticles loaded with ammonia borane by batch and semicontinuous supercritical drying techniques[J].The Journal of Supercritical Fluids,2014,92:299-310. |
47 | OKUTAN C, ARBAG H, YASYERLI N,et al.Catalytic activity of SBA-15 supported Ni catalyst in CH4 dry reforming:Effect of Al,Zr,and Ti co⁃impregnation and Al incorporation to SBA-15[J].International Journal of Hydrogen Energy,2020,45(27):13911-13928. |
48 | BECK J S, VARTULI J C, ROTH W J,et al.A new family of mesoporous molecular sieves prepared with liquid crystal templates[J].Journal of the American Chemical Society,1992,114(27):10834-10843. |
49 | CHEN C, LI Hongxin, DAVIS M E.Studies on mesoporous materialsI.synthesis and characterization of MCM-41[J].Microporous Materials,1993,2(1): 17-26. |
50 | BAGSHAW S A, PROUZET E, PINNAVAIA T J.Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants[J].Science,1995,269(5228):1242-1244. |
51 | TANEV P T, PINNAVAIA T J.A neutral templating route to mesoporous molecular sieves[J].Science,1995,267(5199):865- |
867 | |
52 | HUO Q, LEON R, PETROFF P M,et al.Mesostructure design with gemini surfactants:Supercage formation in a three⁃dimensional hexagonal array[J].Science,1995,268(5215):1324-1327. |
53 | ZHAO D, FENG J, HUO Q,et al.Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J].Science,1998,279(5350):548-552. |
54 | YANG R T.Adsorbents:Fundamentals and Applications[M].Ho⁃ |
boken,NJ,USA:John Wiley & Sons Inc,2003. | |
55 | MAYANOVIC R A, YAN Hao, BRANDT A D,et al.Mechanical and hydrothermal stability of mesoporous materials at extreme conditions[J].Microporous and Mesoporous Materials,2014,195: |
161-166. | |
56 | GOUZE B, CAMBEDOUZOU J, PARRÈS-MAYNADIÉ S,et al.How hexagonal mesoporous silica evolves in water on short and long term:Role of pore size and silica wall porosity[J].Microporous and Mesoporous Materials,2014,183:168-176. |
57 | ZHENG X, GE T S, WANG R Z.Recent progress on desiccant materials for solid desiccant cooling systems[J].Energy,2014,74:280-294. |
58 | JIA C X, DAI Y J, WU J Y,et al.Use of compound desiccant to develop high performance desiccant cooling system[J].International Journal of Refrigeration,2007,30(2):345-353. |
59 | SIMONOVA I A, FRENI A, RESTUCCIA G,et al.Water sorption on composite “silica modified by calcium nitrate”[J].Microporous and Mesoporous Materials,2009,122(1/2/3):223-228. |
60 | ARISTOV Y I, SAPIENZA A, OVOSHCHNIKOV D S,et al.Reallocation of adsorption and desorption times for optimisation of cooling cycles[J].International Journal of Refrigeration,2012,35(3):525-531. |
61 | SUKHYY K M, BELYANOVSKAYA E A, KOZLOV Y N,et al.Structure and adsorption properties of the composites‘silica gel-sodium sulphate’,obtained by Sol-gel method[J].Applied Thermal Engineering,2014,64(1/2):408-412. |
62 | LENZA R F S, NUNES E H M, VASCONCELOS D C L,et al.Preparation of Sol-gel silica samples modified with drying control chemical additives[J].Journal of Non-Crystalline Solids,2015, |
423/ 424:35-40. | |
63 | YAGHI O M, LI Hailian.Hydrothermal synthesis of a metal⁃organic framework containing large rectangular channels[J].Journal of the American Chemical Society,1995,117(41):10401-10402. |
64 | LI Jianrong, SCULLEY J, ZHOU Hongcai.Metal⁃organic frameworks for separations[J].Chemical Reviews,2012,112(2):869- |
932 | |
65 | LI Jianrong, KUPPLER R J, ZHOU Hongcai.Selective gas adsorption and separation in metal⁃organic frameworks[J].Chemical Society Reviews,2009,38(5):1477-1504. |
66 | GHAFFAR I, IMRAN M, PERVEEN S,et al.Synthesis of chitosan coated metal organic frameworks(MOFs) for increasing vancomycin bactericidal potentials against resistant S.aureus strain[J].Materials Science and Engineering:C,2019,105.Doi:10.1016/j.msec.2019.110111 . |
67 | KNOZOWSKA K, THÜR R, KUJAWA J,et al.Fluorinated MOF-808 with various modulators to fabricate high⁃performance hybrid |
membranes with enhanced hydrophobicity for organic⁃organic pe⁃ | |
rvaporation[J].Separation and Purification Technology,2021,264. Doi:10.1016/j.seppur.2021.118315 . | |
68 | BOURRELLY S, LLEWELLYN P L, SERRE C,et al.Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47[J].Journal of the American Chemical Society,2005,127(39):13519-13521. |
69 | KITAGAWA S, MATSUDA R.Chemistry of coordination space of porous coordination polymers[J].Coordination Chemistry Revie⁃ ws,2007,251(21/22/23/24):2490-2509. |
70 | CHANG Ze, YANG Donghui, XU Jian,et al.Flexible metal⁃organic frameworks:Recent advances and potential applications[J].Advanced Materials,2015,27(36):5432-5441. |
71 | 明宗营.天然气饱和含水量计算[J].当代化工,2014,43(2):305-307. |
MING Zongying.The saturation moisture content calculation of natural gas[J].Contemporary Chemical Industry,2014,43(2):305-307. | |
77 | TSALAPORTA E, MACELROY J M D.A comparative study of the physical and chemical properties of pelletized HKUST-1,ZIF-8,ZIF-67 and UiO-66 powders[J].Heliyon,2020,6(9).Doi:10.1016/j.heliyon.2020.e04883 . |
73 | YANG Jiangfeng, BAI Honghao, ZHANG Feifei,et al.Effects of activation temperature and densification on adsorption performance of MOF MIL-100(Cr)[J].Journal of Chemical & Engineering Data,2019,64(12):5814-5823. |
74 | CHANUT N, WIERSUM A D, LEE U H,et al.Observing the effects of shaping on gas adsorption in metal⁃organic frameworks[J].European Journal of Inorganic Chemistry,2016(27):4416-4423. |
75 | DELGADO J A, ÁGUEDA V I, UGUINA M A,et al.Comparison and evaluation of agglomerated MOFs in biohydrogen purification by means of pressure swing adsorption(PSA)[J].Chemical Engineering Journal,2017,326:117-129. |
76 | PETERSON G W, DECOSTE J B, GLOVER T G,et al.Effects of pelletization pressure on the physical and chemical properties of the metal⁃organic frameworks Cu3(BTC)2 and UiO-66[J].Microporous and Mesoporous Materials,2013,179:48-53. |
[1] | 武讨龙, 张胜江, 刘津洋, 洪晓博, 李丽敏, 覃晓玉, 谭晓英, 周燕. 双金属有机框架材料的研究进展[J]. 无机盐工业, 2023, 55(6): 8-17. |
[2] | 陈心怡, 张华, 方伟, 许晓锋. 金属有机框架材料在天然气纯化和存储领域的应用[J]. 无机盐工业, 2023, 55(4): 13-19. |
[3] | 洪美花,刘冠锋,宫毓鹏,李立青,陈铁红. 介孔二氧化硅KIT-6介观单晶微球的合成[J]. 无机盐工业, 2022, 54(7): 149-156. |
[4] | 王力霞,任冬梅,王琼,常春. 磁性金属有机框架材料制备及吸附性能研究[J]. 无机盐工业, 2021, 53(9): 46-50. |
[5] | 孙振海,李滨,郭春垒,臧甲忠,李犇,范景新,汪洋. 介孔二氧化硅合成及其吸附分离性能研究[J]. 无机盐工业, 2021, 53(7): 68-72. |
[6] | 郭伟,石涵,袁标. 无机固体吸附剂在二氧化碳捕集应用中的研究进展[J]. 无机盐工业, 2021, 53(12): 29-34. |
[7] | 董家丽, 王露浔, 李 剑, 杨丽娜, 徐 龙, 孙宇萌. 双介孔二氧化硅制备研究进展[J]. 无机盐工业, 2014, 46(6): 17-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|