无机盐工业 ›› 2022, Vol. 54 ›› Issue (4): 81-87.doi: 10.19964/j.issn.1006-4990.2021-0577
收稿日期:
2021-09-23
出版日期:
2022-04-10
发布日期:
2022-04-18
作者简介:
伍思达(1997— ),男,硕士研究生,研究方向为核燃料循环;E-mail: WU Sida(),LIN Rushan(),ZHANG Lei,JIA Yanhong
Received:
2021-09-23
Published:
2022-04-10
Online:
2022-04-18
摘要:
随着快堆研究的快速发展,干法后处理工艺流程也逐渐成为了研究重点,熔盐电解干法后处理是未来先进核燃料循环系统的核心环节和关键技术。氯化锂-氯化钾共晶盐是干法后处理工艺中最常用的熔盐体系。为了提取乏燃料中的锕系、镧系和铯、锶元素,需要对熔盐进行长时间的电解。在锕系分离提取过程中,镧系和铯、锶等活泼裂片元素在熔盐中不断积累,不仅会改变熔盐体系的理化性质,还将影响后续锕系产品的净化效果。为实现溶剂盐复用,使放射性废物最小化,需定期对废熔盐中的镧系和铯、锶等活泼裂片元素进行净化处理。对干法后处理氯化锂-氯化钾废熔盐中镧系和铯、锶等活泼裂片元素采取的净化工艺,包括熔盐萃取法、熔盐电解法、沉淀法、区域精炼法等工艺的原理、特点和研发进展进行了综述和比较分析,讨论了上述工艺中为实现溶剂盐复用、减少放射性废物产生对废熔盐中的镧系和铯、锶等活泼裂片元素的净化效果。指出了中国废盐净化将围绕实现稀土资源利用最大化、保护环境、最大程度上减少废物的排放开展相关方向的研究。
中图分类号:
伍思达,林如山,张磊,贾艳虹. 干法后处理废盐中活泼裂片元素的净化工艺研究进展[J]. 无机盐工业, 2022, 54(4): 81-87.
WU Sida,LIN Rushan,ZHANG Lei,JIA Yanhong. Research progress on purification process for active crack elements in waste salt by dry post-treatment[J]. Inorganic Chemicals Industry, 2022, 54(4): 81-87.
表1
针对不同元素的净化方法及其优缺点
净化方法 | 净化对象 | 优点 | 缺点 | |
---|---|---|---|---|
熔盐萃取法 | 镧系元素 | 回收率高、净化效果好 | 需要严格控制Li用量 | |
熔盐电解法 | 镧系元素 | 操作简单、效率高 | 电解产生大量氯气,腐蚀设备,处理困难,有污染的风险 | |
沉 淀 法 | 磷酸盐沉淀法 | 镧系元素 | 反应高效、快捷 | 引入新杂质,分离Cs、Sr的效率低 |
碳酸盐沉淀法 | 镧系元素、碱土金属 | 不引入新杂质,可以沉淀碱土金属 | 除去碱土需要控制用量,且产生CO2废气 | |
氧化物沉淀法 | 镧系元素 | 操作简单、不引入新杂质、净化效率高 | 反应时间长、操作复杂、温度高;无法分离Cs、Sr | |
离子交换法 | 镧系元素、Cs、Sr | 低温熔盐离子交换技术成熟 | 分离产生大量废物,且难以适应高温熔盐 | |
结晶法 | 冷指分离法 | Cs、Sr | 不引入新的化学组成 | 操作效率低,分离的量有限,难以实现工程应用 |
区域熔融/结晶法 | Cs、Sr | 不引入新的化学组成,且分离效果好,效率高 | 需要长时间的区域熔融/结晶过程才能得到较纯的分 离盐 |
[1] | 林如山, 何辉, 唐洪彬, 等. 我国乏燃料干法后处理技术研究现状与发展[J]. 原子能科学技术, 2020(S1):115-125. |
[2] | 王有群, 何辉, 林如山, 等. 无机氯化物熔盐在乏燃料干法后处理中的应用进展[J]. 无机盐工业, 2016, 48(8):1-5. |
[3] | 叶国安, 郑卫芳, 何辉, 等. 我国核燃料后处理技术现状和发展[J]. 原子能科学技术, 2020, 54(z1):75-83. |
[4] | 刘海军, 陈晓丽. 国内外乏燃料后处理技术研究现状[J]. 节能技术, 2021, 39(4):358-362. |
[5] |
CHOI J H, LEE K R, KANG H W, et al. Reactive-crystallization method for purification of LiCl salt waste[J]. Journal of Radioanalytical and Nuclear Chemistry, 2020, 325(2):485-492.
doi: 10.1007/s10967-020-07235-0 |
[6] |
INOUE T, KOCH L. Development of pyroprocessing and its future direction[J]. Nuclear Engineering and Technology, 2008, 40(3):183-190.
doi: 10.5516/NET.2008.40.3.183 |
[7] | 梁红彦. 乏燃料电冶金废熔盐中放射性核素的脱除与固化[D]. 南宁:广西大学, 2015. |
[8] | 孙鹏院. 熔盐/液态金属(Bi-Li)还原萃取稀土Ce和Sm[D]. 哈尔滨:哈尔滨工程大学, 2015. |
[9] | EUN H C, CHOI J H, CHO I H, et al. Purification of LiCl-KCl eutectic waste salt containing rare earth chlorides delivered from the pyrochemical process of used nuclear fuel using a reactive distillation process[J]. Journal of Radioanalytical and Nuclear Chemistry, 2016, 30:1419-1425. |
[10] | 贾艳虹, 何辉, 林如山, 等. 用于熔盐体系的氮化硼隔膜Ag/AgCl参比电极性能[J]. 无机盐工业, 2015, 47(5):67-71. |
[11] | MURAKAMI T, SAKAMURA Y, UOZUMI K, et al. Rare earth silicide formation on Si electrode in LiCl-KCl melt to establish a novel used salt treatment process[J]. ECS Transactions, 2020, 98(10):33-46. |
[12] | 张凯, 肖益群, 林如山, 等. 俄罗斯氧化物乏燃料电沉积流程研究进展[J]. 核化学与放射化学, 2019, 41(3):233-241. |
[13] |
SOUČEK P, MALMBECK R, MENDES E, et al. Exhaustive electrolysis for recovery of actinides from molten LiCl-KCl using solid aluminium cathodes[J]. Journal of Radioanalytical and Nuclear Chemistry, 2010, 286:823-828.
doi: 10.1007/s10967-010-0739-6 |
[14] |
SONG K C, LEE H, HUR J M, et al. Status of pyroprocessing technology development in Korea[J]. Nuclear Engineering and Technology, 2010, 42(2):131-144.
doi: 10.5516/NET.2010.42.2.131 |
[15] | 聂春晨. 稀土金属提纯现状及发展趋势[J]. 化工设计通讯, 2019, 45(5):67-68. |
[16] |
IVANOV A B, BYZOVA E D, VOLKOVICH V A, et al. Application of phosphate precipitation for removing strontium and barium from alkali chloride based melts[J]. ECS Transactions, 2020, 98(10):283-294.
doi: 10.1149/09810.0283ecst |
[17] |
CHO Y Z, PARK G H, YANG H C, et al. Minimization of eutectic salt waste from pyroprocessing by oxidative precipitation of lanthanides[J]. Journal of Nuclear Science and Technology, 2009, 46(10):1004-1011.
doi: 10.1080/18811248.2009.9711610 |
[18] |
LEE T K, CHO Y Z, EUN H C, et al. Study on the phosphate reaction characteristics of lanthanide chlorides in molten salt with operating conditions[J]. Journal of Nuclear Science and Technology, 2013, 50(7):742-750.
doi: 10.1080/00223131.2013.799396 |
[19] |
CHO Y Z, LEE T K, EUN H C, et al. Purification of used eutectic (LiCl-KCl) salt electrolyte from pyroprocessing[J]. Journal of Nuclear Materials, 2013, 437(1/2/3):47-54.
doi: 10.1016/j.jnucmat.2013.01.344 |
[20] |
RILEY B J. Electrochemical salt wasteform development:A review of salt treatment and immobilization options[J]. Industrial and Engineering Chemistry Research, 2020, 59(21):9760-9774.
doi: 10.1021/acs.iecr.0c01357 |
[21] |
CHOI J H, EUN H C, LEE K R, et al. Fabrication of rare earth calcium phosphate glass waste forms for the immobilization of rare earth phosphates generated from pyrochemical process[J]. Journal of Non-Crystalline Solids, 2016, 434:79-84.
doi: 10.1016/j.jnoncrysol.2015.12.017 |
[22] |
KIM E H, PARK G I, CHO Y Z, et al. A new approach to minimize pyroprocessing waste salts through a series of fission product removal process[J]. Nuclear Technology, 2008, 162(2):208-218.
doi: 10.13182/NT08-A3949 |
[23] |
LAN Y P, SOHN H Y, MURALI A, et al. The formation and growth of CeOCl crystals in a molten KCl-LiCl flux[J]. Applied Physics A, 2018, 124(10).Doi: 10.1007/s00339-018-2122-3.
doi: 10.1007/s00339-018-2122-3 |
[24] |
LIU Y, LIU K, LUO L, et al. Direct separation of uranium from lanthanides (La,Nd,Ce,Sm) in oxide mixture in LiCl-KCl eutectic melt[J]. Electrochimica Acta, 2018, 275:100-109.
doi: 10.1016/j.electacta.2018.04.140 |
[25] |
LEE H S, GYU-HWAN O H, LEE Y S, et al. Concentrations of CsCl and SrCl2 from a simulated LiCl salt waste generated by pyroprocessing by using Czochralski method[J]. Journal of Nuclear Science and Technology, 2009, 46(4):392-397.
doi: 10.1080/18811248.2007.9711545 |
[26] |
KIM I S, CHUNG D Y, PARK M S, et al. Evaporation of CsCl,BaCl2, and SrCl2 from the LiCl-Li2O molten salt of the electrolytic reduction process[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 303(1):223-227.
doi: 10.1007/s10967-014-3330-8 |
[27] | YOO T S, FRANK S M, SIMPSON M F, et al. Salt-zeolite ion-exchange equilibrium studies for a complete set of fission products in molten LiCl-KCl[J]. Nuclear Technology:A journal of the American Nuclear Society, 2010, 171(3):306-315. |
[28] |
SACHDEV P, SIMPSON M F, FRANK S M, et al. Selective separation of Cs and Sr from LiCl-based salt for electrochemical processing of oxide spent nuclear fuel[J]. Separation Science and Technology, 2008, 43(9/10):2709-2721.
doi: 10.1080/01496390802122212 |
[29] |
LEXA D, JOHNSON I. Occlusion and ion exchange in the molten (lithium chloride-potassium chloride-alkali metal chloride) salt+zeolite 4A system with alkali metal chlorides of sodium,rubidium,and cesium[J]. Metallurgical and Materials Transactions B, 2001, 32(3):429-435.
doi: 10.1007/s11663-001-0028-4 |
[30] |
LEXA D. Occlusion and ion exchange in the molten(lithium chloride+potassium chloride+alkaline-earth chloride) salt+zeolite 4A system with alkaline-earth chlorides of calcium and strontium and in the molten(lithium chloride+potassium chloride+actinide chloride) salt+zeolite 4A system with the actinide chloride of uranium[J]. Metallurgical and Materials Transactions B, 2003, 34(2):201-208.
doi: 10.1007/s11663-003-0007-z |
[31] |
SHALTRY M, PHONGIKAROON S, SIMPSON M F. Ion exchange kinetics of fission products between molten salt and zeolite-A[J]. Microporous and Mesoporous Materials, 2012, 152:185-189.
doi: 10.1016/j.micromeso.2011.11.035 |
[32] | CHO Y Z, LEE T K, CHOI J H, et al. Study on LiCl waste salt treatment process by layer melt crystallization[C]// Salt Lake City.International nuclear fuel cycle conference,GLOBAL 2013:Nuclear energy at a crossroads, 2013:297-299. |
[33] | POGLYAD S S, ANKUDINOVA N S, NECHAEV P I, et al. The cesium precipitation from the spent electrolyte LiCl-KCl composition simulator[J]. Journal of Physics:Conference Series, 2018, 1133(1):12-22. |
[34] |
CHO Y Z, AHN B G, EUN H C, et al. Melt crystallization process treatment of LiCl salt waste generated from electrolytic reduction process of spent oxide fuel[J]. Energy Procedia, 2011, 7(1):525-528.
doi: 10.1016/j.egypro.2011.06.072 |
[35] |
VERSEY J R, PHONGIKAROON S, SIMPSON M F. Separation of CsCl from LiCl-CsCl molten salt by cold finger melt crystallization[J]. Nuclear Engineering and Technology, 2014, 46(3):395-406.
doi: 10.5516/NET.06.2013.082 |
[36] |
CHOI J H, CHO Y Z, LEE T K, et al. Inclusion behavior of Cs,Sr, and Ba impurities in LiCl crystal formed by layer-melt crystallization:Combined first-principles calculation and experimental study[J]. Journal of Crystal Growth, 2013, 371:84-89.
doi: 10.1016/j.jcrysgro.2013.02.013 |
[37] |
CHOI J H, LEE T K, LEE K R, et al. Melt-crystallization monitoring system for the purification of 10 kg-scale LiCl salt waste[J]. Nuclear Engineering and Design, 2018, 326:1-6.
doi: 10.1016/j.nucengdes.2017.10.016 |
[38] | 任永胜, 李军, 马睿, 等. 区域熔融法提纯工业黄磷的数学模型与实验研究[J]. 高校化学工程学报, 2009(6):933-938. |
[39] |
GHOSH K, MANI V N, DHAR S. Numerical study and experimental investigation of zone refining in ultra-high purification of gallium and its use in the growth of GaAs epitaxial layers[J]. Journal of Crystal Growth, 2009, 311(6):1521-1528.
doi: 10.1016/j.jcrysgro.2009.01.102 |
[40] |
CHO Y Z, LEE T K, CHOI J H, et al. Eutectic(LiCl-KCl) waste salt treatment by sequencial separation process[J]. Nuclear Engineering and Technology, 2013, 45(5):675-682.
doi: 10.5516/NET.06.2013.022 |
[41] | WILLIAMS A N, PACK M, PHONGIKAROON S. Separation of SrCl2 and CsCl from ternary SrCl2-LiCl-KCl and quaternary SrCl2-CsCl-LiCl-KCl molten salts via melt crystallization[J]. Transactions of the American Nuclear Society, 2014, 111(1):431-433. |
[42] | 周骏宏, 李军, 任永胜. 区域熔融法净化磷酸的初步研究[J]. 无机盐工业, 2010, 42(7):23-25. |
[43] | 张先锋. 区域熔融温度场数值模拟与实验研究[D]. 沈阳:东北大学, 2006. |
[44] |
CHO Y Z, LEE T K, EUN H C, et al. Purification of used eutectic (LiCl-KCl) salt electrolyte from pyroprocessing[J]. Journal of Nuclear Materials, 2013, 437(1/2/3):47-54.
doi: 10.1016/j.jnucmat.2013.01.344 |
[45] |
SHIM M, CHOI H G, CHOI J H, et al. Separation of Cs and Sr from LiCl-KCl eutectic salt via a zone-refining process for pyroprocessing waste salt minimization[J]. Journal of Nuclear Materials, 2017, 491:9-17.
doi: 10.1016/j.jnucmat.2017.04.036 |
[46] |
CHOI H G, SHIM M, LEE J H, et al. Numerical analysis of impurity separation from waste salt by investigating the change of concentration at the interface during zone refining process[J]. Journal of Crystal Growth, 2017, 474:69-75.
doi: 10.1016/j.jcrysgro.2016.12.083 |
[47] |
SHIM M, KIM Y M, LEE H H, et al. Separation behavior of impurities and selenium reduction by the reactive zone refining process using high-frequency induction heating to purify Te[J]. Journal of Crystal Growth, 2016, 455:6-12.
doi: 10.1016/j.jcrysgro.2016.09.032 |
[48] |
CHO Y Z, PARK G H, LEE H S, et al. Concentration of cesium and strontium elements involved in a LiCl waste salt by a melt crystallization process[J]. Nuclear Technology, 2010, 171(3):325-334.
doi: 10.13182/NT09-7 |
[49] |
WILLIAMS A N, PHONGIKAROON S, SIMPSON M F. Separation of CsCl from a ternary CsCl-LiCl-KCl salt via a melt crystallization technique for pyroprocessing waste minimization[J]. Chemical Engineering Science, 2013, 89:258-263.
doi: 10.1016/j.ces.2012.12.012 |
[50] | 付海英, 耿俊霞, 杨洋, 等. 乏燃料干法后处理中的熔盐减压蒸馏技术[J]. 核技术, 2018(4):5-12. |
[1] | 朱祚峤, 施梦圆, 毛瑞, 郭海宁, 苏宇傲. 混凝沉淀法处理冶金含氟废水工艺研究[J]. 无机盐工业, 2024, 56(4): 118-124. |
[2] | 陶隆海, 王永杰, 段家堂, 舒艺周, 万邦隆, 黄成东, 张跃强, 鲁振亚. 湿法磷酸副产渣酸和萃余酸研究进展与展望[J]. 无机盐工业, 2024, 56(3): 12-18. |
[3] | 苏鑫, 赖冬梅, 周源, 朱霞萍. 自贡地下卤水制备富锶功能盐工艺研究[J]. 无机盐工业, 2024, 56(3): 45-50. |
[4] | 王亿周, 胡晓梅, 王永详, 张维民. 镍铁锰酸钠层状氧化物的制备及性能研究[J]. 无机盐工业, 2024, 56(2): 57-64. |
[5] | 王紫涵, 李军, 陈明, 周青禺. 硝酸铁和磷酸共沉淀法制备电池级磷酸铁工艺研究[J]. 无机盐工业, 2023, 55(7): 51-57. |
[6] | 兰蓥华, 陈艳梅, 马瑞霄, 张燕辉. 铈钛氧化物-凹凸棒土的制备及其光催化性能[J]. 无机盐工业, 2023, 55(4): 133-140. |
[7] | 吴浩,李溪,张军,段思宇. 不锈钢老化着色液预还原草酸沉淀除杂过程研究[J]. 无机盐工业, 2023, 55(2): 119-125. |
[8] | 苏殊,许德华,李朝荣,杨秀山,王辛龙,张志业. 硝酸法磷酸脱氟工艺研究[J]. 无机盐工业, 2021, 53(9): 24-29. |
[9] | 张欣,张丽. 铝铁电极电絮凝法处理镀镉废水的研究[J]. 无机盐工业, 2021, 53(8): 87-90. |
[10] | 冉瑞泉,金央,刘辉,李军,张俊,陈明. 溶剂萃取法净化盐酸法湿法磷酸的研究进展[J]. 无机盐工业, 2021, 53(7): 18-22. |
[11] | 邵强,郭轶琼,朱春雨. 中国沉淀法白炭黑产业发展现状及展望[J]. 无机盐工业, 2020, 52(7): 8-11. |
[12] | 张燕,赵振中,马朝辉,赵彦才,陈治毓,马正强. 碳化法制备电池级碳酸锂工艺优化研究[J]. 无机盐工业, 2020, 52(3): 68-71. |
[13] | 况怡,李军,金央,陈明,左龙涛. 液相合成纳米氧化锌及其光催化性能探讨[J]. 无机盐工业, 2019, 51(9): 40-44. |
[14] | 苏伟,张林锋,吕庆阳,夏语嫣,袁华. 钯负载锰氧化物基双金属复合氧化物催化氧化羰基化合成碳酸二苯酯[J]. 无机盐工业, 2019, 51(9): 91-96. |
[15] | 王犇,陈萌萌,张帆. 过氧化氢提纯净化技术研究进展[J]. 无机盐工业, 2019, 51(6): 1-4. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|