[1] |
XU H Y, JU D X, Li W R, et al. Superior triethylamine sensing pro- perties based on TiO2/SnO2 n-n heterojunction nanosheets directly grown on ceramic tubes[J]. Sensors and Actuators B:Chemical, 2016, 228(2):634-642.
|
[2] |
WU Y, ZHOU W, DONG W, et al. Temperature-controlled synjournal of porous CuO particles with different morphologies for highly sensitive detection of triethylamine[J]. Crystal Growth and Design, 2017, 17(4):2158-2165.
|
[3] |
JU D, XU H, XU Q, et al. High triethylamine-sensing properties of NiO/SnO2 hollow sphere P-N heterojunction sensors[J]. Sensors and Actuators B:Chemical, 2015, 215(8):39-44.
|
[4] |
LIU B, ZANG L, ZHAO H, et al. Synjournal and sensing properties of spherical flower like architectures assembled with SnO2 submicron rods[J]. Sensors and Actuators B:Chemical,2012,173(10):643-651. [5] CAI T,CHEN L,REN Q,et al.The biodegradation pathway of triet- hylamine and its biodegradation by immobilized arthrobacter proto- phormiae cells[J].Journal of Hazardous Materials, 2011, 186(1):59-66.
|
[6] |
JU D, XU H, QIU Z, et al. Near room temperature,fast-response, and highly sensitive triethylamine sensor assembled with Au-loaded ZnO/SnO2 core-shell nanorods on flat alumina substrates[J]. ACS Applied Materials & Interfaces, 2015, 7(34):19163-19171.
|
[7] |
LI Y W, LOU N, SUN G, et al. Synjournal of porous nanosheets-as- sembled ZnO/ZnCo2O4 hierarchical structure for TEA detection[J]. Sensors and Actuators B:Chemical, 2019, 287(5):199-208.
|
[8] |
SUI L L, SONG X X, CHENG X L, et al. An ultra-selective and ul- trasensitive TEA sensor based on α-MoO3 hierarchical nanostruc- tures and the sensing mechanism[J]. CrystEngComm, 2015, 17(34):6493-6503.
|
[9] |
MENG X N, YAO M X, MU S F, et al. Oxygen vacancies enhance triethylamine sensing properties of SnO2 nanoparticles[J]. Chemis- try Select, 2019, 4(38):11268-11274.
|
[10] |
MOORE W M, EDWARDS R J, BAVDA L T. An improved capillary gas chromatography method for triethylamine application to sara- floxacin rochloride and GnRH residual solvents testing[J]. Analyti- cal Letters, 1999, 32(13):2603-2612.
|
[11] |
ZHANG W H, ZHANG W D. Fabrication of SnO2-ZnO nanocompo- site sensor for selective sensing of trimethylamine and the freshne- ss of fishes[J]. Sensors and Actuators B:Chemical, 2008, 134(2):403-408.
|
[12] |
孙冬杰, 段宏, 顾理. 毛细管色谱柱气相色谱法测定工作场所空气中三乙胺[J]. 中国卫生工程学, 2018, 17(3):339-340.
|
[13] |
赵苏云, 徐森彪, 郑力行. 工作场所空气中三乙胺测定方法的研究[J]. 中国卫生检验杂志, 2012, 22(12):28-33.
|
[14] |
朱佩华, 李珊珊. 用于检测三乙胺的有机无机复合薄膜及气敏传感器:中国, 110274936A[P]. 2019-09-24.
|
[15] |
XIE Y, DU J, ZHAO R, et al. Facile synjournal of hexagonal brick- shaped SnO2 and its gas sensing toward triethylamine[J]. Journal of Environmental Chemical Engineering, 2013, 1(4):1380-1384.
|
[16] |
WANG L, PENG R, CI L, et al. SnO2 microrods based triethylamine gas sensor[J]. IOP Conference Series:Materials and Engineering, 2020, 772(1):012-058.
|
[17] |
XUE D, WANG Y, CAO J, et al. Hydrothermal synjournal of CeO2- SnO2 nanoflowers for improving triethylamine gas sensing proper- ty[J]. Nanomaterials, 2018, 8(12).Doi: 10.3390/nano8121025.
|
[18] |
ZHU M, YANG T, ZHAI C, et al. Fast triethylamine gas sensing res- ponse properties of Ho-doped SnO2 nanoparticles[J]. Journal of Alloys and Compounds, 2020, 817(3).Doi: 10.1016/j.jallcom.2019.152724.
|
[19] |
BI W J, WANG W, LIU S T, et al. Synjournal of Rh-SnO2 nanosheets and ultra-high triethylamine sensing performance[J]. Journal of Alloys and Compounds, 2020, 817(10).Doi: 10.1016/j.jallcom.2019.152730.
|
[20] |
LI W R, XU H Y, YU H Q, et al. Different morphologies of ZnO and their triethylamine sensing properties[J]. Journal of Alloys and Co- mpounds, 2017, 706(6):461-469.
|
[21] |
LI Y W, TAO Z H, LUO N, et al. Single-crystalline porous nano- plates-assembled ZnO hierarchical microstructure with superior TEA sensing properties[J]. Sensors and Actuators B:Chemical, 2019, 290(7):607-615.
|
[22] |
GAO H J, MA Y Z, SONG P, et al. Cu-doped Fe2O3 porous spindles derived from metal-organic frameworks with enhanced sensitivity to triethylamine[J]. Materials Science in Semiconductor Processing, 2021, 123(3).Doi: 10.1016/j.mssp.2020.105510.
|
[23] |
ZHAI C, ZHAO Q, GU K, et al. Ultra-fast response and recovery of triethylamine gas sensors using a MOF-based ZnO/ZnFe2O4 struc- tures[J]. Journal of Alloys and Compounds, 2019, 784(5):660-667.
|
[24] |
SUN G, CHEN H L, LI Y W, et al. Synjournal and triethylamine sen- sing properties of mesoporous α-Fe2O3 microrods[J]. Materials Le- tters, 2016, 178(9):213-216.
|
[25] |
WEI Q, SUN J, SONG P, et al. MOF-derived α-Fe2O3 porous spin- dle combined with reduced graphene oxide for improvement of TEA sensing performance[J]. Sensors and Actuators B:Chemical, 2020. 304(5).Doi: 10.1016/j.snb.2019.127306.
|
[26] |
HU Q, HE J, CHANG J, et al. Needle-shaped WO3 nanorods for triethylamine gas sensing[J]. ACS Applied Nano Materials, 2020, 3(9):9046-9054.
|
[27] |
TOMER V K, DEVI S, MALIK R, et al. Highly sensitive and selec- tive volatile organic amine (VOA) sensors using mesoporous WO3- SnO2 nanohybrids[J]. Sensors and Actuators B:Chemical, 2016, 229(1):321-330.
|
[28] |
SUN Y, DONG Z, ZHANG D, et al. The fabrication and triethylami- ne sensing performance of In-MIL-68 derived In2O3 with porous lacunaris structure[J]. Sensors and Actuators B:Chemical, 2021, 326(1).Doi: 10.1016/j.snb.2020.128791.
|
[29] |
LIU X J, ZHAO K R, SUN X L, et al. Rational design of sensitivity enhanced and stability improved TEA gas sensor assembled with Pd nanoparticles-functionalized In2O3 composites[J]. Sensors and Actuators B:Chemical, 2019, 185(4):1-10.
|
[30] |
ZHENG L, MA T, ZHAO Y, et al. Synergy between Au and In2O3 microspheres:A superior hybrid structure for the selective and sen- sitive detection of triethylamine[J]. Sensors and Actuators B:Che- mical, 2019, 290(7):155-162.
|
[31] |
LI H, ZHANG N, ZHAO X, et al. Modulation of TEA and methanol gas sensing by ion-exchange based on a sacrificial template 3D di- amond-shaped MOF[J]. Sensors and Actuators B:Chemical, 2020, 315(7).Doi: 10.1016/j.snb.2020.128136.
|
[32] |
PEI H, LIN Z G, SONG P, et al. rGO-wrapped porous LaFeO3 mi-crospheres for high-performance triethylamine gas sensors[J]. Ce-ramics International, 2020, 46(7):9363-9369.
|
[33] |
YUAN Z Y, ZHAO J P, MENG F L, et al. Sandwich-like composites of double-layer Co3O4 and reduced graphene oxide and their sens- ing properties to volatile organic compounds[J]. Journal of Alloys and Compounds, 2019, 793(7):24-30.
|
[34] |
LI S S, ZHAO C R, ZHOU S, et al. Non-covalent interaction-driven self-assembly of perylene diimide on rGO for room-temperature sensing of triethylamine with enhanced immunity to humidity[J]. Chemical Engineering Journal, 2020, 385(4).Doi: 10.1016/j.cej.2019.123397.
|
[35] |
JIN H, BALA H, SUN G, et al. Facile synjournal of Co3O4 nanochains and their improved TEA sensing performance by decorating with Au nanoparticles[J]. Journal of Alloys and Compounds, 2019, 776(3):782-790.
|
[36] |
LUO N, SUN G, ZHANG B, et al. Improved TEA sensing performa- nce of ZnCo2O4 by structure evolution from porous nanorod to sin- gle-layer nanochain[J]. Sensors and Actuators B:Chemical, 2018, 277(12):544-554.
|
[37] |
翟成博. 钨基和铁基氧化物半导体三乙胺气敏特性研究[D]. 长春:吉林大学, 2020.
|
[38] |
LIAO C Z, ZHANG M, NIU L Y, et al. Organic electrochemical tran- sistors with graphene-modified gate electrodes for highly sensitive and selective dopamine sensors[J]. Journal of Materials Chemistry B:Materials for Biology, 2014, 2:191-200.
|
[39] |
WANG Y, ZHAO D, ZHAO H, et al. Beyond equilibrium:Metal-or- ganic frameworks for molecular sieving and kinetic gas separa- tion[J]. Crystal Growth and Design, 2017, 17(5):2291-2308.
|