[1] |
Wang C, An B, Lin W. Metal-organic frameworks in solid-gas phase catalysis[J]. ACS Catalysis, 2018,9(1):130-146.
|
[2] |
Ferey G. Some suggested perspectives for multifunctional hybrid po-rous solids[J].Dalton Trans.,2009(23):4400-4415.
|
[3] |
Kuppler R J, Timmons D J, Fang Q R, et al. Potential applications of metal-organic frameworks[J]. Coordination Chemistry Reviews, 2009,253(23/24):3042-3066.
|
[4] |
Zou R, Abdel-Fattah A I, Xu H, et al. Storage and separation appli-cations of nanoporous metal-organic frameworks[J]. Cryst.Eng.Co-mm., 2010,12(5):1337-1353.
|
[5] |
Farrusseng D, Aguado S, Pinel C. Metal-organic frameworks:Oppor-tunities for catalysis[J]. Angew.Chem.Int.Ed.Engl., 2009,48(41):7502-7513.
|
[6] |
Hu Y H, Zhang L. Hydrogen storage in metal-organic frameworks[J]. Adv.Mater., 2010,22(20):E117-E130.
|
[7] |
Hedin N, Chen L, Laaksonen A. Sorbents for CO2 capture from flue gas—Aspects from materials and theoretical chemistry[J]. Nano-scale, 2010,2(10):1819-1841.
|
[8] |
Rojas S, Wheatley P S, Quartapelle-Procopio E, et al. Metal-organic frameworks as potential multi-carriers of drugs[J]. Cryst.Eng.Co-mm., 2013,15(45):9364-9367.
|
[9] |
Qiu J, Feng Y, Zhang X, et al. Acid-promoted synjournal of UiO-66 for highly selective adsorption of anionic dyes:Adsorption perfor-mance and mechanisms[J]. J Colloid Interface Sci., 2017,499:151-158.
|
[10] |
Jung S, Kim Y, Kim S J, et al. Bio-functionalization of metal-organic frameworks by covalent protein conjugation[J]. Chem.Commun.Camb., 2011,47(10):2904-2906.
|
[11] |
Müller P, Bucior B, Tuci G, et al. Computational screening,synth-journal and testing of metal-organic frameworks with a bithiazole linker for carbon dioxide capture and its green conversion into cyclic carbonates[J]. Molecular Systems Design & Engineering, 2019,4(5):1000-1013.
|
[12] |
Furukawa H, Cordova K E, O′Keeffe M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013,341(6149):1230444.
|
[13] |
Yaghi O M, O′Keeffe M, Ockwig N W, et al. Reticular synjournal and the design of new materials[J]. Nature, 2003,423(6941):705-714.
|
[14] |
Sumida K, Rogow D L, Mason J A, et al. Carbon dioxide capture in metal-organic frameworks[J]. Chemical Reviews, 2012,112(2):724-781.
|
[15] |
Kawano M, Kawamichi T, Haneda T, et al. The modular synjournal of functional porous coordination networks[J]. Journal of the Am-erican Chemical Society, 2007,129(50):15418-15419.
|
[16] |
Yang Z, Zhang J, Kintner-Meyer M C W, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011,111(5):3577-3613.
|
[17] |
Lee C Y, Farha O K, Hong B J, et al. Light-harvesting metal-organic frameworks(MOFs):Efficient strut-to-strut energy transfer in bo-dipy and porphyrin-based MOFs[J]. Journal of the American Che-mical Society, 2011,133(40):15858-15861.
|
[18] |
Simons C, Hanefeld U, Arends I W C E, et al. Noncovalent anchor-ing of asymmetric hydrogenation catalysts on a new mesoporous aluminosilicate:Application and solvent effects[J]. Chemistry-A European Journal, 2004,10(22):5829-5835.
|
[19] |
Gaab M, Trukhan N, Maurer S, et al. The progression of Al-based metal-organic frameworks-From academic research to industrial production and applications[J]. Microporous and mesoporous ma-terials, 2012,157:131-136.
|
[20] |
Frišcic T, Halasz I, Štrukil V, et al. Clean and efficient synjournal us-ing mechanochemistry:Coordination polymers,metal-organic fra-meworks and metallodrugs[J]. Croatica Chemica Acta, 2012,85(3):367-378.
|
[21] |
Ibarra I A, Bayliss P A, Pérez E, et al. Near-critical water,a clean-er solvent for the synjournal of a metal-organic framework[J]. Green Chemistry, 2012,14(1):117-122.
|
[22] |
Sarawade P, Tan H, Polshettiwar V. Shape-and morphology-con-trolled sustainable synjournal of Cu,Co,and in metal organic frame-works with high CO2 capture capacity[J]. ACS Sustainable Chemi-stry & Engineering, 2013,1(1):66-74.
|
[23] |
Stock N, Biswas S. Synjournal of metal-organic frameworks(MOFs):Routes to various MOF topologies,morphologies,and composit-es[J]. Chemical Reviews, 2012,112(2):933-969.
|
[24] |
He Y, Zhou W, Qian G, et al. Methane storage in metal-organic fra-meworks[J]. Chemical Society Reviews, 2014,43(16):5657-5678.
|
[25] |
Suh M P, Park H J, Prasad T K, et al. Hydrogen storage in metal-organic frameworks[J]. Chemical Reviews, 2012,112(2):782-835.
|
[26] |
Horcajada P, Gref R, Baati T, et al. Metal-organic frameworks in biomedicine[J]. Chemical Reviews, 2012,112(2):1232-1268.
|
[27] |
Llabrés I, Xamena F X, Corma A, et al. Applications for metal-or-ganic frameworks(MOFs) as quantum dot semiconductors[J]. Jo-urnal of Physical Chemistry C, 2007,111(1):80-85.
|
[28] |
Dhakshinamoorthy A, Asiri A M, Garcia H. Mixed-metal or mixed-linker metal organic frameworks as heterogeneous catalysts[J]. Catalysis Science & Technology, 2016,6(14):5238-5261.
|
[29] |
Chen J, Shen K, Li Y. Greening the processes of metal-organic fra-mework synjournal and their use in sustainable catalysis[J]. Chem.Sus.Chem., 2017,10(16):3165-3187.
|
[30] |
Czaja A, Leung E, Trukhan N, et al. Metal-organic frameworks:Applications from catalysis to gas storage[M]. Weinheim,Germany:Wiley-VCH Verlag GmbH, 2011.
|
[31] |
Mueller U, Schubert M, Teich F, et al. Metal-organic frameworks-Prospective industrial applications[J]. Journal of Materials Che-mistry, 2006,16(7):626-636.
|
[32] |
Czaja A U, Trukhan N, Müller U. Industrial applications of metal-organic frameworks[J]. Chemical Society Reviews, 2009,38(5):1284-1293.
|
[33] |
Glavinovic M, Qi F, Katsenis A D, et al. Redox-promoted associa-tive assembly of metal-organic materials[J]. Chemical Science, 2016,7(1):707-712.
|
[34] |
Horcajada P, Chalati T, Serre C, et al. Porous metal-organic-frame-work nanoscale carriers as a potential platform for drug delivery and imaging[J]. Nature Materials, 2010,9(2):172-178.
|
[35] |
Huxford R C, Della Rocca J, Lin W. Metal-organic frameworks as potential drug carriers[J]. Current Opinion in Chemical Biology, 2010,14(2):262-268.
|
[36] |
Huskic I, Pekov I V, Krivovichev S V, et al. Minerals with metal-organic framework structures[J]. Science Advances, 2016,2(8):e1600621.
|
[37] |
Sánchez-Sánchez M, Getachew N, Díaz K, et al. Synjournal of metal-organic frameworks in water at room temperature:Salts as linker sources[J]. Green Chemistry, 2015,17(3):1500-1509.
|
[38] |
Dreischarf A C, Lammert M, Stock N, et al. Green synjournal of Zr-CAU-28:Structure and properties of the first Zr-MOF based on 2,5-furandicarboxylic acid[J]. Inorganic Chemistry, 2017,56(4):2270-2277.
|
[39] |
Rose M, Weber D, Lotsch B V, et al. Biogenic metal-organic frame-works:2,5-furandicarboxylic acid as versatile building block[J]. Microporous and Mesoporous Materials, 2013,181:217-221.
|
[40] |
Crawford D E, Casaban J. Recent developments in mechanochemi-cal materials synjournal by extrusion[J]. Advanced Materials, 2016,28(27):5747-5754.
|
[41] |
Rubio-Martinez M, Hadley T D, Batten M P, et al. Scalability of continuous flow production of metal-organic frameworks[J]. Chem.Sus.Chem., 2016,9(9):938-941.
|
[42] |
Wißmann G, Schaate A, Lilienthal S, et al. Modulated synjournal of Zr-fumarate MOF[J]. Microporous and Mesoporous Materials, 2012,152:64-70.
|
[43] |
Werpy T, Petersen G. Top value added chemicals from biomass:Volume Ⅰ-results of screening for potential candidates from sugars and synreport gas[R].Golden,CO(US):National Renewable En-ergy Lab., 2004.
|
[44] |
Wang Z, Liu H, Wang S, et al. A luminescent Terbium-succinate MOF thin film fabricated by electrodeposition for sensing of Cu2+ in aqueous environment[J]. Sensors and Actuators B:Chemical, 2015,220:779-787.
|
[45] |
Liu J Q, Wang Y Y, Liu P, et al. A novel 3D twofold interpenetrat-ing microporous metal-organic framework containing 1D water ta-pes with cyclic pentamer units[J]. Inorganic Chemistry Communi-cations, 2007,10(3):343-347.
|
[46] |
Cliffe M J, Mottillo C, Stein R S, et al. Accelerated aging:A low en-ergy,solvent-free alternative to solvothermal and mechanochemi-cal synjournal of metal-organic materials[J]. Chemical Science, 2012,3(8):2495-2500.
|
[47] |
Guillerm V, Gross S, Serre C, et al. A zirconium methacrylate oxo-cluster as precursor for the low-temperature synjournal of porous zirconium(Ⅳ) dicarboxylates[J]. Chemical communications, 2010,46(5):767-769.
|
[48] |
Deleu W P R, Stassen I, Jonckheere D, et al. Waste PET (bottles)as a resource or substrate for MOF synjournal[J]. Journal of Materi-als Chemistry A, 2016,4(24):9519-9525.
|
[49] |
Lo S H, Raja D S, Chen C W, et al. Waste polyethylene terephtha-late(PET) materials as sustainable precursors for the synjournal of nanoporous MOFs,MIL-47,MIL-53(Cr,Al,Ga) and MIL-101 (Cr)[J]. Dalton Transactions, 2016,45(23):9565-9573.
|
[50] |
Ren J, Dyosiba X, Musyoka N M, et al. Green synjournal of chromi-um-based metal-organic framework(Cr-MOF) from waste polyet ethylene terephthalate(PET) bottles for hydrogen storage applica-tions[J]. International Journal of Hydrogen Energy, 2016,41(40):18141-18146.
|
[51] |
Hawxwell S M, Brammer L. Solvent hydrolysis leads to an unusual Cu(Ⅱ) metal-organic framework[J]. Cryst.Eng.Comm., 2006,8(6):473-476.
|
[52] |
Al-Ghoul M, Issa R, Hmadeh M. Synjournal,size and structural ev-olution of metal-organic framework-199 via a reaction-diffusion process at room temperature[J]. Cryst.Eng.Comm., 2017,19(4):608-612.
|
[53] |
Hou S, Wu Y N, Feng L, et al. Green synjournal and evaluation of iron-based metal-organic framework MIL-88B for the efficient de-contamination of arsenate from water[J]. Dalton Transactions, 2018.Doi: 10.1039.C7DT03775A.
|
[54] |
Capello C, Fischer U, Hungerbühler K. What is a green solvent? A comprehensive framework for the environmental assessment of sol-vents[J]. Green Chemistry, 2007,9(9):927-934.
|
[55] |
Martins G A V, Byrne P J, Allan P, et al. The use of ionic liquids in the synjournal of zinc imidazolate frameworks[J]. Dalton Transac-tions, 2010,39(7):1758-1762.
|
[56] |
Jessop P G. Searching for green solvents[J]. Green Chemistry, 2011,13(6):1391-1398.
|
[57] |
Parnham E R, Morris R E. Ionothermal synjournal of zeolites,metal-organic frameworks,and inorganic-organic hybrids[J]. Accounts of Chemical Research, 2007,40(10):1005-1013.
|
[58] |
Lin J B, Lin R B, Cheng X N, et al. Solvent/additive-free synjournal of porous/zeolitic metal azolate frameworks from metal oxide/hydro-xide[J]. Chemical Communications, 2011,47(32):9185-9187.
|
[59] |
Do J L, Friscic T. Mechanochemistry:A force of synjournal[J]. ACS Central Science, 2017,3(1):13-19.
|
[60] |
Frišcic T, Fábián L. Mechanochemical conversion of a metal oxide into coordination polymers and porous frameworks using liquid-assisted grinding(LAG)[J]. Cryst.Eng.Comm., 2009,11(5):743-745.
|
[61] |
Frišcic T, Reid D G, Halasz I, et al. Ion-and liquidšassisted grin-ding:Improved mechanochemical synjournal of metal-organic frame-works reveals salt inclusion and anion templating[J]. Angewandte Chemie International Edition, 2010,49(4):712-715.
|
[62] |
Bennett T D, Cao S, Tan J C, et al. Facile mechanosynjournal of am-orphous zeolitic imidazolate frameworks[J]. Journal of the Ameri-can Chemical Society, 2011,133(37):14546-14549.
|
[63] |
Bennett T D, Cheetham A K. Amorphous metal-organic framewo-rks[J]. Accounts of Chemical Research, 2014,47(5):1555-1562.
|
[64] |
Kaur P, Hupp J T, Nguyen S T. Porous organic polymers in cataly-sis:Opportunities and challenges[J]. Acs Catalysis, 2011,1(7):819-835.
|