Environment·Health·Safety

Fe0/C induced copper salt reduction coupled with chemical precipitation method to remove thiocyanate from wastewater

  • Zhiqi JIA ,
  • Huimin NIE ,
  • Yongxiang ZHAO
Expand
  • 1. College of Chemistry and Chemical Engineering,Shanxi University,Taiyuan 030006,China
    2. Engineering Research Center of Fine Chemicals,Ministry of Education,Taiyuan 030006,China

Received date: 2022-03-14

  Online published: 2023-01-17

Abstract

Coking wastewater is a kind of industrial wastewater with coexistence of organic-inorganic components and great environmental harm formed along with coke production.Its high content of thiocyanate will poison microorganisms,inhibit biological activity,and affect the stability of wastewater biochemical systems.It is of great significance to study the resource utilization of thiocyanate.A series of biochar-supported zero-valent iron materials(Fe0/C) were prepared by equal volume impregnation combined with carbothermal reduction method,and their physical properties and structures were characterized by X-ray diffraction and N2 adsorption-desorption techniques.By simulating coking wastewater,zero-valent iron was used to reduce copper salts to couple the synthesis reaction of cuprous thiocyanate to realize the recovery and utilization of thiocyanate.The characterization showed that Fe0/C was an amorphous carbon-supported zero-valent iron material with a small specific surface area(less than 1 m2/g).The experimental results showed that the thiocyanate removal rate of 3Fe0/C(3% Fe) reached 99 % with the simulated wastewater of thiocyanate concentration of 2.50 g/L,copper salt concentration of 0.03 mol/L,solution pH value of 5.5 at 40 ℃ for 10 min,and the efficient removal of thiocyanate in simulated coking wastewater was achieved.The cuprous thiocyanate products with higher added value were developed,and the technical theory of physicochemical-biochemical treatment of coking wastewater was enriched.

Cite this article

Zhiqi JIA , Huimin NIE , Yongxiang ZHAO . Fe0/C induced copper salt reduction coupled with chemical precipitation method to remove thiocyanate from wastewater[J]. Inorganic Chemicals Industry, 2023 , 55(1) : 129 -135 . DOI: 10.19964/j.issn.1006-4990.2022-0116

References

1 刘莎, 陈康康. 焦化废水深度处理技术研究进展[J].中国资源综合利用, 2020, 38(9):132-134.
1 LIU Sha, CHEN Kangkang. Research progress on advanced treatment technology of coking wastewater[J].China Resources Comprehensive Utilization, 2020, 38(9):132-134.
2 肖小双, 安雪姣, 叶晗媛, 等. 废水中硫氰酸盐的微生物降解研究进展[J].生物技术通报, 2021, 37(2):224-235.
2 XIAO Xiaoshuang, AN Xuejiao, YE Hanyuan, et al. Research progress on microbial degradation of thiocyanate in wastewater[J].Biotechnology Bulletin, 2021, 37(2):224-235.
3 YANG Wenlan, WANG Jicheng, HUA Ming, et al. Characterization of effluent organic matter from different coking wastewater treatment plants[J].Chemosphere, 2018, 203:68-75.
4 何绪文, 张斯宇, 何灿. 焦化废水深度处理现状及技术进展[J].煤炭科学技术, 2020, 48(1):100-107.
4 HE Xuwen, ZHANG Siyu, HE Can. Status and progress of coking wastewater advanced treatment technology[J].Coal Science and Technology, 2020, 48(1):100-107.
5 RAPER E, STEPHENSON T, FISHER R, et al. Characterisation of thiocyanate degradation in a mixed culture activated sludge process treating coke wastewater[J].Bioresource Technology, 2019, 288.Doi:10.1016/j.biortech.2019.121524.
6 PAN Jianxin, MA Jingde, WU Haizhen, et al. Application of metabolic division of labor in simultaneous removal of nitrogen and thiocyanate from wastewater[J].Water Research, 2019, 150:216- 224.
7 áLVAREZ J R, ANTóN F E, áLVAREZ-GARCíA S, et al. Treatment of aqueous effluents from steel manufacturing with high thiocyanate concentration by reverse osmosis[J].Membranes, 2020, 10(12).Doi:10.3390/membranes10120437.
8 范铃琴, 马欣, 任静, 等. Fenton氧化去除焦化废水纳滤浓水中有机物的研究[J].工业用水与废水, 2020, 51(2):11-16.
8 FAN Lingqin, MA Xin, REN Jing, et al. Study on organic matters removal from nanofiltration concentrated coking wastewater by Fenton oxidation[J].Industrial Water & Wastewater, 2020, 51(2):11-16.
9 张恒, 李淑敏, 刘媛, 等. 微波强化Fenton技术对焦化废水生化出水的深度处理[J].环境工程学报, 2020, 14(6):1495-1502.
9 ZHANG Heng, LI Shumin, LIU Yuan, et al. Advanced treatment of bio-treated coking wastewater by microwave-enhanced Fenton process[J].Chinese Journal of Environmental Engineering, 2020, 14(6):1495-1502.
10 何灿, 黄祁, 何文丽, 等. 臭氧催化氧化深度处理焦化废水的研究及应用[J].给水排水, 2020, 56(10):65-71.
10 HE Can, HUANG Qi, HE Wenli, et al. Study on ozone catalytic oxidation in advanced treatment of coking wastewater and its application[J].Water & Wastewater Engineering, 2020, 56(10):65-71.
11 强喆林, 王玲, 吴迪, 等. 含酚废水处理技术研究进展[J].当代化工, 2021, 50(9):2206-2210.
11 QIANG Zhelin, WANG Ling, WU Di, et al. Research progress of phenolic wastewater treatment technology[J].Contemporary Che-
11 Industry mical,2021, 50(9):2206-2210.
12 孙培杰, 王林平, 徐乐瑾. 焦化废水中氰化物的处理技术研究进展[J].化工进展, 2021, 40(S1):386-396.
12 SUN Peijie, WANG Linping, XU Lejin. Advances in the treatment of cyanide in coking wastewater[J].Chemical Industry and Engineering Progress, 2021, 40(S1):386-396.
13 金玉涛, 史大勇, 郭利华, 等. 酚氰废水处理工程实践[J].工业水处理, 2021, 41(10):133-136.
13 JIN Yutao, SHI Dayong, GUO Lihua, et al. Engineering practice of phenol cyanide wastewater treatment[J].Industrial Water Treat-ment, 2021, 41(10):133-136.
14 高富聪, 陈国宝, 马云瑞, 等. 废水中硫氰酸根的脱除研究现状[J].有色金属:冶炼部分, 2021(3):143-149, 154.
14 GAO Fucong, CHEN Guobao, MA Yunrui, et al. Research status of removal of thiocyanate from wastewater[J].Nonferrous Metals:Extractive Metallurgy, 2021(3):143-149, 154.
15 CHO Y, CATTRALL R W, KOLEV S D. A novel polymer inclusion membrane based method for continuous clean-up of thiocyanate from gold mine tailings water[J].Journal of Hazardous Materials, 2018, 341:297-303.
16 REN Gengbo, ZHOU Minghua, ZHANG Qizhan, et al. Cost-efficient improvement of coking wastewater biodegradability by multi-stages flow through peroxi-coagulation under low current load[J].Water Research, 2019, 154:336-348.
17 谢莉, 刘吉明, 逯新宇, 等. 电催化氧化法—活性炭深度处理焦化废水[J].工业水处理, 2021, 41(8):69-74.
17 XIE Li, LIU Jiming, LU Xinyu, et al. Advanced treatment of coking wastewater by electrocatalytic oxidation-activated carbon adsorption[J].Industrial Water Treatment, 2021, 41(8):69-74.
18 初永宝, 陈德林, 刘生, 等. 分体式流化床催化臭氧—絮凝工艺深度处理焦化废水生化尾水[J].北京大学学报:自然科学版, 2022, 58(1):177-185.
18 CHU Yongbao, CHEN Delin, LIU Sheng, et al. Split fluidized bed catalytic ozone-flocculation process for advanced treatment of biochemical tail water from coking wastewater[J].Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58(1):177- 185.
19 邹晓爽, 李江, 李彦澄, 等. 两级A/O工艺处理焦化废水有机污染物转化特征及细菌群落响应[J].环境科学研究, 2022, 35(5):1245-1256.
19 ZOU Xiaoshuang, LI Jiang, LI Yancheng, et al. Two-stage anoxic/oxic(A/O) process to remove organic pollutants and bacterial community in coking wastewater[J].Research of Environmental Sciences, 2022, 35(5):1245-1256.
20 曾婧. 活性炭处理含硫氰酸钠废水的研究[J].江西化工, 2019(4):138-140.
20 ZENG Jing. Study on treatment of wastewater containing sodium thiocyanate by activated carbon[J].Jiangxi Chemical Industry, 2019(4):138-140.
21 TURAN A, KEYIKOGLU R, KOBYA M, et al. Degradation of thiocyanate by electrochemical oxidation process in coke oven wastewater:Role of operative parameters and mechanistic stu-dy[J].Chemosphere, 2020, 255.Doi:10.1016/j.chemosphere.2020.127014.
22 周钦灵, 冯凡让, 王武雄, 等. 含硫氰酸根废液综合利用及无害化处置技术路线研究[J].广东化工, 2021, 48(11):90-91, 130.
22 ZHOU Qinling, FENG Fanrang, WANG Wuxiong, et al. Study on comprehensive utilization and harmless disposal technology of thiocyanate wastewater[J].Guangdong Chemical Industry, 2021, 48(11):90-91, 130.
23 谢佳兵. M x O y /C复合材料的制备及在酚类废水处理中应 用[D].太原:山西大学, 2019.
23 XIE Jiabing. Preparation of M x O y /C composites and its application in phenol wastewater treatment[D].Taiyuan:Shanxi University, 2019.
24 席乔悦. 氧化亚铜和硫氰酸亚铜纳米材料的制备及其光电性质研究[D].北京:中国科学院大学, 2018.
24 XI Qiaoyue. Preparation and photoelectric properties of cuprous oxide and cuprous cyanide nanomaterials[D].Beijing:University of Chinese Academy of Sciences, 2018.
25 李明威, 李金汞. 硫氰酸亚铜及其应用[J].无机盐工业, 1985, 17(4):36-37.
26 LIU Wujun, JIANG Hong, YU Hanqing. Emerging applications of biochar-based materials for energy storage and conversion[J].Energy & Environmental Science, 2019, 12(6):1751-1779.
27 YUAN Ye, DING Yujie, WANG Chunhui, et al. Multifunctional stiff carbon foam derived from bread[J].ACS Applied Materials & Interfaces, 2016, 8(26):16852-16861.
28 DONG Yongqiang, CHEN Yingmei, YOU Xu, et al. High photoluminescent carbon based dots with tunable emission color from orange to green[J].Nanoscale, 2017, 9(3):1028-1032.
29 杨惠芳. 纳米CuSCN的制备及其在复合涂料中的应用研究[D].天津:天津大学, 2007.
29 YANG Huifang. Study on the preparation of cuprous thiocyanate nanoparticles and application in nano-compound paint[D].Tianjin:Tianjin University, 2007.
30 雷乐成, 汪大翚. 水处理高级氧化技术[M].北京:化学工业出版社, 2001.
31 孙凤. 流化床非均相催化氧化处理工业废水中的硫氰酸盐[D].大连:大连工业大学, 2016.
31 SUN Feng. Fluidised bed heterogeneous catalytic oxidation treatment of industrial wastewater thiocyanate[D].Dalian:Dalian Poly-technic University, 2016.
32 LI Mingxin, LI Binchuan, CHEN Jianshe, et al. A novel green method for copper recovery from cuprous thiocyanate-containing acidified sediments in the gold industry[J].Journal of Cleaner Production, 2021, 329.Doi:10.1016/j.jclepro.2021.129729.
Outlines

/