Reviews and Special Topics

Research progress on self-cleaning film materials

  • Farong ZHANG ,
  • Tiantian FAN ,
  • Yanyun GUO ,
  • Lu LI ,
  • Bingguang LIU ,
  • Jiansheng LI
Expand
  • 1. School of biological and environmental engineering,Tianjin Vocational Institute,Tianjin 300410,China
    2. Tianjin Lairuite New Energy Technology Co.,Ltd.
    3. Tianjin Aisheng New Energy Technology Co.,Ltd.

Received date: 2021-08-25

  Online published: 2022-04-18

Abstract

Taking the application of self-cleaning materials in the photovoltaic industry as an example,the application development process,principles and main problems of nano-SiO2 and nano-TiO2 were summarized,which were commonly used as film materials for self-cleaning of solar cell glasses.And the main reason for the difficulty in commercial application of nanoTiO2 self-cleaning film materials was analyzed.Combined with the author′s relevant research work,the research and development progress on nano-graphene self-cleaning anti-reflection film materials was introduced,and it was recommended to strengthen the self-cleaning film materials of nano-graphene in photovoltaic,textile,sewage treatment and other industries.It was believed that nano-graphene was the black material that promoted the upgrading of self-cleaning technology.With the continuous updating of preparation methods and technologies of nano-graphene composite materials,nano-graphene would be more widely used in the field of self-cleaning.

Cite this article

Farong ZHANG , Tiantian FAN , Yanyun GUO , Lu LI , Bingguang LIU , Jiansheng LI . Research progress on self-cleaning film materials[J]. Inorganic Chemicals Industry, 2022 , 54(4) : 74 -80 . DOI: 10.19964/j.issn.1006-4990.2021-0514

References

[1] GREEN M A, BREMNER S P. Energy conversion approaches and materials for high-efficiency photovoltaics[J]. Nature Material, 2017, 16(1):23-34.
[2] 林昇华, 张景, 艾玲, 等. 光伏玻璃减反射膜的研究进展[J]. 材料导报, 2019, 33(11):3588-3595.
[3] 官燕玲, 张豪, 闫旭洲, 等. 灰尘覆盖对光伏组件性能影响的原位实验研究[J]. 太阳能学报, 2016, 37(8):1944-1950.
[4] ABASS K I, AL-ZUBAIDI D S M, AL-WAELI A A K. Effect of pollution and dust on PV performance[J]. International Journal of Civil,Mechanical and Energy Science(IJCMES), 2017, 3(4):181-185.
[5] ME P, JAYAMADHURI T. Effects of dust on the performance of solar panel and improving the performance by using arm controller and gear motor based cleaning method[J]. International Journal of Innovative Science,Engineering & Technology, 2015, 2(9):329-334.
[6] 赵明智, 张旭, 苗一鸣, 等. 沙漠环境沙尘覆盖下的光伏组件输出特性研究[J]. 太阳能学报, 2018, 39(3):744-748.
[7] SAYYAH A, HORENSTEIN M N, MAZUMDER M K. Energy yield loss caused by dust deposition on photovoltaic panels[J]. Solar Energy, 2014, 107:576-604.
[8] VERMA L K, SAKHUJA M, SON J, et al. Self-cleaning and antireflective packaging glass for solar modules[J]. Renewable Energy, 2011, 36(9):2489-2493.
[9] LIN Y, HE J. Recent progress in antireflection and self-cleaning technology-from surface engineering to functional surfaces[J]. Progress in Materials Science, 2014, 61:94-143.
[10] 李建生, 刘炳光, 董学通. 用于提高太阳能电池效率的无机纳米材料的研究进展[J]. 无机盐工业, 2014, 46(9):1-6.
[11] MOZUMDER M S, MOURAD A H I, PERVEZ H, et al. Recent developments in multifunctional coatings for solar panel applications:A review[J]. Solar Energy Materials and Solar Cells, 2019, 189(11):75-102.
[12] 潘胜. 光伏玻璃防尘性能研究[J]. 太阳能, 2020(4):23-28.
[13] BAHATTAB M A, ALHOMOUDI I A, ALHUSSAINI M I, et al. Anti-soiling surfaces for PV applications prepared by sol-gel processing:Comparison of laboratory testing and outdoor exposure[J]. Solar Energy Materials and Solae Cells, 2016, 157:422-428.
[14] HAGER P J, SCHLECHTE J S. Silica coating for enhanced hydrophilicity:US,20130071649[P]. 2013-03-21.
[15] AZANI A, HALIN D S C, RAZAK K A, et al. Recent graphene oxide/TiO2 thin film based on self-cleaning application[J]. IOP Conference Series:Materials Science and Engineering, 2019, 572.Doi: 10.1088/1757-899X/572/1/012079.
[16] 李建生, 刘炳光, 王韬, 等. 棒状纳米二氧化硅水溶胶制备和镀膜研究[J]. 无机盐工业, 2016, 48(3):34-38.
[17] GANGULY P, BYRNE C, BREEN A, et al. Antimicrobial activity of photocatalysts:Fundamentals,mechanisms[J]. Applied Catalysis B:Environmental, 2018, 225:51-75.
[18] 黄宇, 张静, 刘燕, 等. 光催化薄膜的亲水性及其应用[J]. 地球环境学报, 2018, 9(5):415-433.
[19] 李建生, 刘炳光, 王少杰, 等. 玻璃负载纳米TiO2/SiO2 膜的制备和光催化性能[J]. 工业水处理, 2016, 36(5):60-63.
[20] 李建生, 韩璐, 张发荣, 等. 一种可见光催化的自清洁材料的制备方法:中国,2021109447256[P]. 2021-08-17.
[21] GARLISI C, TREPCI E, LI X, et al. Multilayer thin film structures for multifunctional glass:Self-cleaning,antireflective and energysaving properties[J]. Applied Energy, 2020, 264.Doi: 10.1016/j.apenergy.2020.114697.
[22] 张发荣, 李建生, 尹浩男, 等. 一种太阳电池玻璃低效减反射膜的增效方法:中国,108110064B[P]. 2019-11-08.
[23] 赵琪, 孙赫阳, 胡子文, 等. 二氧化钛基复合光催化材料的制备及应用进展[J]. 功能材料与器件学报, 2020, 26(2):83-88.
[24] HIGASHINO S, MIYAKE M, IKENOUE T. Formation of a photocatalytic WO3 surface layer on electrodeposited Al-W alloy coatings by selective dissolution and heat treatment[J]. Scientific Reports, 2019, 9.Doi: 10.1038/s41598-019-52178-6.
[25] SIMON S M, CHANDRAN A, GEORGE G, et al. Development of thick superhydrophilic TiO2-ZrO2 transparent coatings realized through the inclusion of poly(methyl methacrylate) and pluronic-F127[J]. ACS Omega, 2018, 3:14924-14932.
[26] MADKOUR M, SAGHEER F A. Au/ZnS and Ag/ZnS nanoheterostructures as regenerated nanophotocatalysts for photocatalytic degradation of organic dyes[J]. Optical Materials Express, 2017, 7(1):158-169.
[27] TALINUNGSANG, UPADHAYA D, KUMAR P, et al. Superhydrophilicity of photocatalytic ZnO/SnO2 heterostructure for self-cleaning applications[J]. Journal of Sol-Gel Science and Technology, 2019, 92:575-584.
[28] RAMADHANI J P, WAHYUNINGSIH S, RAMELAN A H. Improving method of TiO2-Fe2O3 composite materials for self-cleaning glass preparation[J]. Materials Science and Engineering, 2019, 578.Doi: 10.1088/1757-899X/578/1/012029.
[29] LATTHE S S, SUDHAGAR P, RAVIDHAS C, et al. Self-cleaning and superhydrophobic CuO coating by jet-nebulizer spray pyrolysis technique[J]. CrystEngComm, 2015, 17:2624-2628.
[30] GAO X, LIU X X, ZHU Z M, et al. Enhanced visible light photocatalytic performance of CdS sensitized TiO2 nanorod arrays decorated with Au nanoparticles as electron sinks[J]. Scientific Reports, 2017, 7.Doi: 10.1038/s41598-017-01124-5.
[31] NAKAYAMA K, HIRAGA T, ZHU C Y, et al. Facile preparation of self-healing superhydrophobic CeO2 surface by electrochemical processes[J]. Applied Surface Science, 2017, 423:968-976.
[32] BARRECA D, GRI F, GASPAROTTO A, et al. Multi-functional MnO2 nanomaterials for photoactivated applications by a plasmaassisted fabrication route[J]. Nanoscale, 2019, 11:98-108.
[33] HANAEI H, ASSADI M K, SAIDUR R. Highly efficient antireflective and self-cleaning coatings that incorporate carbon nanotubes(CNTs) into solar cells:A review[J]. Renewable and Sustainable Energy Reviews, 2016, 59:620-635.
[34] 李建生, 于韶梅, 王欣, 等. 石墨烯制备中的无机氧化剂和无机还原剂[J]. 无机盐工业, 2020, 52(8):6-10.
[35] 李鹏. 技术创新推动光伏行业变革[J]. 太阳能, 2018(4):73-74.
[36] 王子韩. 一种高效自清洁石墨烯涂层太阳能光伏组件及制造方法:中国,104916711B[P]. 2017-07-28.
[37] 孙立涛, 毕恒昌, 万树. 一种制备超疏水、耐磨、导电且具有自清洁功能膜的方法:中国,105482136B[P]. 2017-12-22.
[38] 杨欣, 崔淑杰, 王玉琪, 等. 一种光伏玻璃用功能涂层的制备方法:中国,112374767A[P]. 2021-02-19.
[39] 祖晓冬, 李青超, 李建生, 等. 一种石墨烯掺杂自清洁玻璃镀膜液的制备方法:中国,109385122A[P]2019-02-26.
[40] 王欣, 李仕增, 李建生, 等. 一种石墨烯掺杂玻璃镀膜液及其制备方法:中国,109206017A[P]2019-01-15.
[41] 凡甜甜, 郭燕云, 张发荣, 等. 一种石墨烯改性太阳能电池自清洁减反射玻璃:中国,202110764584X[P]. 2021-07-07.
[42] 祖晓冬, 张发荣, 郭燕云, 等. 一种石墨烯基超疏水自清洁玻璃的制备方法:中国,2021109507505[P]. 2021-08-18.
[43] POSA V R, ANNAVARAM V, KODURU J R, et al. Preparation of graphene-TiO2 nanocomposite and photocatalytic degradation of Rhodamine-B under solar light irradiation[J]. J.Exp.Nanosci., 2016, 11:722-736.
[44] ZABIHI F, YAZDI M R A, ESLAMIAN M. Photocatalytic grapheneTiO2 thin films fabricated by low-temperature ultrasonic vibrationassisted spin and spray coating in a sol-gel process[J]. Catalysts, 2017, 7.Doi: 10.3390/catal7050136.
[45] VALLEJO W, RUEDA A, URIBE C D. Photocatalytic activity of graphene oxide-TiO2 thin films sensitized by natural dyes extracted from bactris guineensis[J]. Royal Society Open Science, 2019, 3. Doi: 10.1098/rsos.181824.
[46] NGUYEN D K V, NGUYEN K D V. Magnetite nanoparticles-TiO2 nanoparticles-graphene oxide nanocomposite:Synjournal,characterization and photocatalytic degradation for Rhodamine-B dye[J]. AIMS Materials Science, 2020, 7(3):288-301.
[47] TIMOUMI A. Reduction band gap energy of TiO2 assembled with graphene oxide nanosheets[J]. Graphene, 2018, 7:31-38.
[48] PARK J. Photocatalytic performance of graphene-TiO2 hybrid nanomaterials under visible light[J]. Korean Inst.Electr.Electron.Mater.Eng.March, 2019, 32(2):161-164.
[49] DIAA M, HASSABO A G. Self-cleaning properties of cellulosic fabrics:A review[J]. Biointerface Research in Applied Chemistry, 2022, 12(2):1847-1855.
[50] WANG P, YAO T, SUN B, et al. A cost-effective method for preparing mechanically stable anti-corrosive superhydrophobic coating based on electrochemically exfoliated graphene[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2017.Doi: 10.1016/j.colsurfa.2016.11.002.
Outlines

/