Reviews and Special Topics

Analysis and prospect of using fly ash based zeolite for infrared suppression of tail flame of aircraft

  • Haiyue XUE ,
  • Lianyong WANG ,
  • Xiangyu LIU ,
  • Jianli HAN ,
  • Yifan YANG
Expand
  • 1. School of Metallurgy,Northeastern University,Shenyang 110000,China
    2. State Key Laboratory of Eco-industry for Environmental Protection

Received date: 2021-05-31

  Online published: 2022-03-18

Abstract

The anti-infrared radiation method of particle medium is one of the important means of aircraft tail flame stealth.In order to promote the research and development of granular materials used to suppress infrared radiation,the stealth characte-ristics of tail flame was systematically analyzed.The connotation of infrared radiation suppression was to change the infrared band and weaken the intensity of infrared radiation.By summarizing the research progress of fly ash based zeolite,the research progress of particulate aerosol inhibiting infrared radiation and spraying methods,combined with the analysis of aircraft tail flame radiation components,the existing problems and future development direction were summarized.Fly ash,as one of the solid wastes produced by thermal power plants,had the characteristics of high yield and low cost.It was proposed to synthesize zeolite molecular sieve from fly ash under certain conditions,and further prepare fly ash based zeolite loaded modified titanium dioxide material.As the particle application material,it could be used to suppress the infrared radiation of tail flame,which could turn waste into treasure. On the premise of reducing the preparation cost,it protected the environment and human health and promoted the sustainable development of society.The current research on the inhibition effect of zeolite components on infrared radiation was reviewed.The feasibility of their strong adsorption of high infrared radiation gas and photocatalytic performance of modified titanium dioxide were analyzed. The design of particle adsorption and shielding spray structure fully demonstrated the advantages of fly ash based zeolite.And the application prospect of this materials in aircraft tail flame stealth was put forward.

Cite this article

Haiyue XUE , Lianyong WANG , Xiangyu LIU , Jianli HAN , Yifan YANG . Analysis and prospect of using fly ash based zeolite for infrared suppression of tail flame of aircraft[J]. Inorganic Chemicals Industry, 2022 , 54(3) : 23 -30 . DOI: 10.19964/j.issn.1006-4990.2021-0357

References

[1] RAO G A, MAHULIKAR S P. Integrated review of stealth technolo-gy and its role in airpower[J]. Aeronautical Journal, 2002, 106(1066):629-642.
[2] 黄智国. 空间目标地基红外探测技术研究[D]. 长春:中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2018.
[3] 陈俊, 吉洪湖. 二元塞式喷管红外特征及壁面降温的红外抑制效果计算[J]. 航空动力学报, 2012, 27(11):2429-2435.
[4] 罗明东. 无人机排气系统红外隐身研究[D]. 南京:南京航空航天大学, 2006.
[5] 徐如人. 分子筛与多孔材料化学[M]. 北京: 科学出版社, 2004.
[6] BELVISO C. State-of-the-art applications of fly ash from coal and biomass:A focus on zeolite synjournal processes and issues[J]. Pro-gress in Energy and Combustion Science, 2018, 65:109-135.
[7] HÖLLER H, WIRSCHING U. Zeolite formation from fly ash[J]. For-tschritte der Mineralogie, 1985, 63(1):21-43.
[8] HOLLMAN G G, STEENBRUGGEN G, JANSSEN-JURKOVICOVÁ M. A two-step process for the synjournal of zeolites from coal fly ash[J]. Fuel, 1999, 78(10):1225-1230.
[9] SHIGEMOTO N, HAYASHI H, MIYAURA K. Selective formation of Na-X zeolite from coal fly ash by fusion with sodium hydroxide prior to hydrothermal reaction[J]. Journal of Materials Science, 1993, 28(17):4781-4786.
[10] QUEROL X, ALASTUEY A, LÓPEZ-SOLER A, et al. A fast me-thod for recycling fly ash:Microwave-assisted zeolite synjournal[J]. Environmental Science & Technology, 1997, 31(9):2527-2533.
[11] LV N Q, ZHOU T G, LIU H, et al. Pure zeolite X synthesized from coal fly ash by pretreatment with solid alkali and using seed crys-tal[J]. IOP Conference Series:Materials Science and Engineering, 2019, 479(1).Doi: 10.1088/1757-899X/479/1/012081.
[12] WANG J H, LI D K, JU F L, et al. Supercritical hydrothermal synt-hesis of zeolites from coal fly ash for mercury removal from coal derived gas[J]. Fuel Processing Technology, 2015, 136:96-105.
[13] 刘永梅. 以工业固体废渣为原料用固相法合成系列分子筛载体的研究[D]. 太原:太原理工大学, 2000.
[14] 徐婷婷. 以粉煤灰为原料合成微孔分子筛过程晶粒生长调控[D]. 大庆:东北石油大学, 2016.
[15] 王璐, 王国栋, 李现龙, 等. 粉煤灰水热合成Y型沸石及其表征[J]. 环境工程学报, 2018, 12(2):618-624.
[16] JIANG Z Q, YANG J, MA H W, et al. Reaction behaviour of Al2O3 and SiO2 in high alumina coal fly ash during alkali hydrothermal process[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(6):2065-2072.
[17] 吴迪秀, 罗柳, 贾玉娟, 等. 粉煤灰碱熔融-水热法合成A型沸石及吸附性能研究[J]. 硅酸盐通报, 2019, 38(6):1873-1877.
[18] 陈彦广, 康越, 杨秀琪, 等. 从粉煤灰中提取铝源制取ZSM-5及其动态水热晶化过程的研究[J]. 硅酸盐通报, 2019, 38(3):604-608.
[19] LI Z, GU G Z, JI S H. Performance of nitrogen and phosphorus re-moval in petrochemical wastewater by zeolited fly ash[J]// IOP Conference Series:Earth and Environmental Science, 2018, 153(2).Doi: 10.1088/1755-1315/153/2/022020.
[20] MA L J, HAN L N, CHEN S, et al. Rapid synjournal of magnetic zeo-lite materials from fly ash and iron-containing wastes using superc-ritical water for elemental mercury removal from flue gas[J]. Fuel Processing Technology, 2019, 189:39-48.
[21] NATALIA C, KATARZYNA Z, MONIKA M, et al. Ni/zeolite X de-rived from fly ash as catalysts for CO2 methanation[J]. Fuel, 2020, 267.Doi: 10.1016/j.fuel.2020.117139.
[22] CLAUDIA B, FRANCESCO C, PIETRO R, et al. Immobilization of Ni by synjournaling zeolite at low temperatures in a polluted soil[J]. Chemosphere, 2010, 78(9):1172-1176.
[23] 郑楠. 以粉煤灰沸石制备外墙隔热保温涂料的实验研究[D]. 太原:山西大学, 2014.
[24] HERMAN B M, BROWNING R S. Determination of the effective imaginary term of the complex refractive index of atmospheric dust by remote sensing:The diffuse-direct radiation method[J]. Joumal of the Atmospheric Sciences, 1975, 32:918-925.
[25] 尉东胶, 邱金桓. 大气气溶胶折射率虚部的宽谱反演方法 I.理论[J]. 大气科学, 1998, 22(5):677-685.
[26] 李放, 吕达仁. 利用消光谱反演气溶胶复折射率的一种新方法及其应用[J]. 遥感技术与应用, 1995, 10(2):1-8.
[27] 霸书红, 张进, 宋东明, 等. 超细石墨插层化合物的制备及性能测试[J]. 火工品, 2004(1):14-16.
[28] 李素芳, 查文珂, 方建军, 等. 石墨烯烟幕红外激光消光性能研究[J]. 红外技术, 2010, 32(6):366-370.
[29] 保石, 周冶, 张紫浩, 等. 燃烧型炭黑烟幕红外遮蔽性能研究[J]. 光电技术应用, 2013, 28(5):85-88.
[30] 李旺昌, 李明愉, 王书满, 等. 铁磁体/碳复合材料红外衰减性能[J]. 北京工业大学学报, 2013, 39(4):604-608.
[31] 白林, 李宁, 郭永利. 铜粉烟幕的消光特性及其红外遮蔽效果对比试验[J]. 舰船电子工程, 2009, 29(5):161-163.
[32] 吴林山. 气溶胶抑制红外辐射研究[D]. 南京:南京航空航天大学, 1992.
[33] 刘传平, 李传, 李永亮, 等. 气固两相流强化传热研究进展[J]. 化工学报, 2014, 65(7):2485-2494.
[34] 张建奇, 方小平. 红外物理[M]. 西安: 西安电子科技大学出版社, 2004.
[35] 胡路平. 气溶胶材料的吸湿性及含湿量对消光效果影响的实验研究[D]. 南京:南京航空航天大学, 2006.
[36] 李卉荟. 飞行状态下含离散颗粒热喷流的红外特征研究[D]. 南京:南京航空航天大学, 2009.
[37] 张彦军. 含离散颗粒热喷流颗粒分布特征数值研究及验证[D]. 南京:南京航空航天大学, 2008.
[38] 刘勇波, 樊祥, 水心恒. 抗红外成像制导技术浅析[J]. 光电对抗与无源干扰, 2002(3):5-9,32.
[39] 刘光猛, 邓海飞, 汪卫华. 气溶胶抑制红外辐射研究综述[J]. 激光与红外, 2014(10):1079-1085.
[40] 张净玉. 球形离散颗粒抑制热喷流红外辐射规律研究[D]. 南京:南京航空航天大学, 2007.
[41] 戴昊, 彭想, 张天志, 等. 粉煤灰合成沸石在水处理中的应用进展[J]. 广州化工, 2020, 48(15):1-3,6.
[42] 阳世清, 徐松林, 岳守体, 等. 含高氮化合物的铜基红外干扰烟幕剂研究[J]. 光电技术应用, 2006, 21(4):22-26.
[43] 刘江海, 张良, 代晓东, 等. 超细陶瓷粉体红外干扰性能研究[J]. 火工品, 2011(2):10-14.
[44] 王玄玉, 潘功配, 何艳兰. 压片法测试纳米氧化铝的红外消光特性[J]. 光谱实验室, 2005, 22(3):449-452.
[45] 丁楠, 张其土, 王庭慰. 红外烟幕干扰材料的制备与性能研究[J]. 光学技术, 2005, 31(3):452-453,456.
[46] 丁楠, 张其土. 抗红外/激光双模烟幕干扰材料的研究[J]. 材料科学与工程学报, 2006, 24(5):750-753.
[47] 毕鹏禹, 吴昱, 聂凤泉, 等. 层状超分子烟幕材料红外干扰性能研究[J]. 火工品, 2015(2):1-5.
[48] 吉林大学化学系红外辐射材料研究组. 分子筛型选择性红外辐射材料的研究(Ⅰ)[J]. 吉林大学学报:物理版, 1977(4):74-76.
[49] 高翔. 飞行器/排气系统红外辐射及电磁散射特性数值研究[D]. 西安:西北工业大学, 2016.
Outlines

/