Reviews and Special Topics

Research progress on semi-solid energy storage batteries

  • Xiaojie BAI ,
  • Defu CAO ,
  • Junhui WANG ,
  • Hao LIU ,
  • Libing LIAO
Expand
  • 1. School of Science,China University of Geosciences(Beijing),Beijing 100083,China
    2. School of Materials Science and Technology,China University of Geosciences(Beijing)

Received date: 2021-05-07

  Online published: 2022-03-14

Abstract

The semi-solid energy storage batteries combine the advantages of high energy density of rechargeable batteries with the flexible design of flow batteries.It is a new type of electrochemical energy storage technology that has attracted widespread at-tention.The research progress on semi-solid batteries in the fields of lithium-ion batteries,lithium-sulfur batteries,zinc batter-ies,air batteries,organic batteries and other different types of energy storage batteries were reviewed.And the influence of active materials,conductive additives,electrolytes in the semi-solid electrodes and battery structure on the performance of semi-solid batteries were explored.Then problems in the development of semi-solid electrodes were further analyzed and sum-marized,and it was found that the performance of semi-solid batteries could be effectively improved by developing new mate-rials and new chemical systems.Finally,it was put forward that the research focus of semi-solid batteries in the future was to improve energy density and cycle stability,and reduce slurry viscosity,etc.

Cite this article

Xiaojie BAI , Defu CAO , Junhui WANG , Hao LIU , Libing LIAO . Research progress on semi-solid energy storage batteries[J]. Inorganic Chemicals Industry, 2022 , 54(2) : 6 -15 . DOI: 10.19964/j.issn.1006-4990.2021-0294

References

[1] DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid:A battery of choices[J]. Science, 2011, 334(6058):928-935.
[2] WANG W, LUO Q T, LI B, et al. Recent progress in redox flow ba-ttery research and development[J]. Advanced Functional Materials, 2013, 23(8):970-986.
[3] DUDUTA M, HO B, WOOD V C, et al. Semi-solid lithium rechar-geable flow battery[J]. Advanced Energy Materials, 2011, 1(4):511-516.
[4] 任雅琨, 陈永翀, 冯彩梅, 等. 锂离子液流电池电极悬浮液的电子导电性建模及仿真[J]. 现代科学仪器, 2014(3):84-89.
[5] CHAYAMBUKA K, FRANSAER J, DOMINGUEZ-BENETTON X. Modeling and design of semi-solid flow batteries[J]. Journal of Po-wer Sources, 2019, 434.Doi: 10.1016/j.jpowsour.2019.226740.
[6] SHUKLA G, FRANCO A A. Handling complexity of semisolid redox flow battery operation principles through mechanistic simulations[J]. The Journal of Physical Chemistry C:Nanomaterials and Interfaces, 2018, 122(42):23867-23877.
[7] LACROIX R, BIENDICHO J J, MULDER G, et al. Modelling the rheology and electrochemical performance of Li4Ti5O12 and LiNi1/3Co1/3Mn1/3O2 based suspensions for semi-solid flow batteries[J]. Electrochimica Acta, 2019, 304:146-157.
[8] SEN S, CHOW C M, MOAZZEN E, et al. Electroactive nanofluids with high solid loading and low viscosity for rechargeable redox flow batteries[J]. Journal of Applied Electrochemistry, 2017, 47(5):593-605.
[9] KURATANI K, ISHIBASHI K, KOMODA Y, et al. Controlling of di-spersion state of particles in slurry and electrochemical properties of electrodes[J]. Journal of the Electrochemical Society, 2019, 166(4):A501-A506.
[10] 冯彩梅, 张晓虎, 陈永翀, 等. 新型电化学储能技术:半固态锂电池[J]. 科技通报, 2017, 33(8):19-26,179.
[11] 陈永翀, 武明晓, 任雅琨, 等. 锂离子液流电池的研究进展[J]. 电工电能新技术, 2012, 31(3):81-85.
[12] CHEN H N, LAI N C, LU Y C. Silicon-carbon nanocomposite semi-solid negolyte and its application in redox flow batteries[J]. Che-mistry of Materials, 2017, 29(17):7533-7542.
[13] WU Y Y, CAO D F, BAI X J, et al. Effects of non-ionic surfactants on the rheological,electrical and electrochemical properties of highly loaded silicon suspension electrodes for semi-solid flow ba-tteries[J]. ChemElectroChem, 2020, 7(17):3623-3631.
[14] VENTOSA E, SKOUMAL M, VAZQUEZ F J, et al. Electron bottl-eneck in the charge/discharge mechanism of lithium titanates for batteries[J]. ChemSusChem, 2015, 8(10):1737-1744.
[15] MADEC L, YOUSSRY M, CERBELAUD M, et al. Electronic vs io-nic limitations to electrochemical performance in Li4Ti5O12-based organic suspensions for lithium-redox flow batteries[J]. Journal of the Electrochemical Society, 2014, 161(5):A693-A699.
[16] QI Z X, KOENIG G M. A carbon-free lithium-ion solid dispersion redox couple with low viscosity for redox flow batteries[J]. Journal of Power Sources, 2016, 323:97-106.
[17] VENTOSA E, ZAMPARDI G, FLOX C, et al. Solid electrolyte in-terphase in semi-solid flow batteries:A wolf in sheep′s clothing[J]. Chemical Communications, 2015, 51(81):14973-14976.
[18] QI Z X, LIU A L, KOENIG G M. Carbon-free solid dispersion LiCoO2 redox couple characterization and electrochemical evalua-tion for all solid dispersion redox flow batteries[J]. Electrochimica Acta, 2017, 228:91-99.
[19] WEI T S, FAN F Y, HELAL A, et al. Biphasic electrode suspensions for Li-ion semi-solid flow cells with high energy density,fast charge transport,and low-dissipation flow[J]. Advanced Energy Materi-als, 2015, 5(15).Doi: 10.1002/aenm.201500535.
[20] DANIEL R G, ZAHILIA C H, SERGI S R, et al. Battery and super-capacitor materials in flow cells.Electrochemical energy storage in a LiFePO4/reduced graphene oxide aqueous nanofluid[J]. Elec-trochimica Acta, 2018, 281(5):594-600.
[21] LI Z, SMITH K C, DONG Y J, et al. Aqueous semi-solid flow cell:Demonstration and analysis[J]. Physical Chemistry Chemical Phy-sics, 2013, 15(38).Doi: 10.1039/c3cp53428f.
[22] FENG C M, CHEN Y C, LIU D D, et al. Conductivity and electro-chemical performance of LiFePO4 slurry in the lithium slurry ba-ttery[J]. IOP Conference Series:Materials Science and Engineer-ing, 2017, 207(1).Doi: 10.1088/1757-899X/207/1/012076.
[23] 高静, 陈剑, 衣宝廉. 半固态LiFePO4液流电池的研究与制备[J]. 电源技术, 2018, 42(11):1690-1693.
[24] QI C L, MA X L, NING G Q, et al. Aqueous slurry of S-doped car-bon nanotubes as conductive additive for lithium ion batteries[J]. Carbon, 2015, 92:245-253.
[25] TIAN X Q, FENG C M, JIANG H, et al. Surface modification of po-sitive current collector for lithium slurry battery[J]. Advanced Te-chnology of Electrical Engineering and Energy, 2019, 38(9):59-66.
[26] BIENDICHO J J, FLOX C, SANZ L, et al. Static and dynamic stu-dies on LiNi1/3Co1/3Mn1/3O2-based suspensions for semi-solid flow batteries[J]. ChemSusChem, 2016, 9(15):1938-1944.
[27] ZHENG Q, NIU Z H, YE J, et al. High voltage,transition metal complex enables efficient electrochemical energy storage in a Li-ion battery full cell[J]. Advanced Functional Materials, 2017, 27(4).Doi: 10.1002/adfm.201604299.
[28] SONG Z P, ZHOU H S. Towards sustainable and versatile energy storage devices:An overview of organic electrode materials[J]. Energy & Environmental Science, 2013, 6(8):2280-2301.
[29] PENG H J, HUANG J Q, CHENG X B, et al. Review on high-load-ing and high-energy lithium-sulfur batteries[J]. Advanced Energy Materials, 2017, 7(24).Doi: 10.1002/aenm.201700260.
[30] XU S, CHENG Y Y, ZHANG L, et al. An effective polysulfides brid-gebuilder to enable long-life lithium-sulfur flow batteries[J]. Nano Energy, 2018, 51:113-121.
[31] CHEN H N, ZOU Q L, LIANG Z J, et al. Sulphur-impregnated flow cathode to enable high-energy-density lithium flow batteries[J]. Nature Communications, 2015, 6.Doi: 10.1038/ncomms6877.
[32] CHEN H N, LU Y C. A high-energy-density multiple redox semi- solid-liquid flow battery[J]. Advanced Energy Materials, 2016, 6(8).Doi: 10.1002/aenm.201502183.
[33] XU S, ZHANG L, ZHANG X P, et al. A self-stabilized suspension catholyte to enable long-term stable Li-S flow batteries[J]. Journal of Materials Chemistry A, 2017, 5(25):12904-12913.
[34] DONG K, WANG S P, YU J X. A lithium/polysulfide semi-solid rechargeable flow battery with high output performance[J]. RSC Advances, 2014, 4(88):47517-47520.
[35] FAN F Y, WOODFORD W H, LI Z, et al. Polysulfide flow batteries enabled by percolating nanoscale conductor networks[J]. Nano Letters, 2014, 14(4):2210-2218.
[36] SOLOMON B R, CHEN X W, RAPOPORT L, et al. Enhancing the performance of viscous electrode-based flow batteries using lubri-cant-impregnated surfaces[J]. ACS Applied Energy Materials, 2018, 1(8):3614-3621.
[37] ZHOU Y C, CONG G T, CHEN H N, et al. A self-mediating redox flow battery:High-capacity polychalcogenide-based redox flow ba-ttery mediated by inherently present redox shuttles[J]. ACS Energy Letters, 2020, 5(6):1732-1740.
[38] GU S, HUANG X, WANG Q, et al. A hybrid electrolyte for long-life semi-solid-state lithium sulfur batteries[J]. Journal of Materials Chemistry A, 2017, 5(27):13971-13975.
[39] 方飞, 张文魁, 施媛媛, 等. 可充电锌电极的研究现状和进展[J]. 浙江化工, 2004, 35(7):23-25.
[40] VENTOSA E, AMEDU O, SCHUHMANN W. Aqueous mixed-cation semi-solid hybrid-flow batteries[J]. ACS Applied Energy Materi-als, 2018, 1(10):5158-5162.
[41] XIE C X, LI T Y, DENG C Z, et al. A highly reversible neutral zinc/manganese battery for stationary energy storage[J]. Energy & En- vironmental Science, 2020, 13(1):135-143.
[42] MUBEEN S, JUN Y S, LEE J, et al. Solid suspension flow batteries using earth abundant materials[J]. ACS Applied Materials & In-terfaces, 2016, 8(3):1759-1765.
[43] LIU J, WANG Y. Preliminary study of high energy density Zn/Ni flow batteries[J]. Journal of Power Sources, 2015, 294:574-579.
[44] ZHU Y G, NARAYANAN T M, TULODZIECKI M, et al. High-en-ergy and high-power Zn-Ni flow batteries with semi-solid electro-des[J]. Sustainable Energy & Fuels, 2020, 4:4076-4085.
[45] SOAVI F, RUGGERI I, ARBIZZANI C. Design study of a novel,semi-solid Li/O2 redox flow battery[J]. ECS Transactions, 2016, 72(9):1-9.
[46] RUGGERI I, ARBIZZANI C, SOAVI F. A novel concept of semi-solid,Li redox flow air(O2) battery,a breakthrough towards high energy and power batteries[J]. Electrochimica Acta, 2016, 206:291-300.
[47] RUGGERI I, ARBIZZANI C, SOAVI F. Carbonaceous catholyte for high energy density semi-solid Li/O2 flow battery[J]. Carbon, 2018, 130:749-757.
[48] MORI R. Semi-solid-state aluminium-air batteries with electrolytes composed of aluminium chloride hydroxide with various hydropho-bic additives[J]. Physical Chemistry Chemical Physics, 2018, 20(47):29983-29988.
[49] KUPSCH C, WEIK D, FEIERABEND L, et al. Vector flow imaging of a highly-laden suspension in a zinc-air flow battery model[J]. IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control, 2019, 66(4):761-771.
[50] ZHAO Y F, SI S H, WANG L, et al. Electrochemical study on poly-pyrrole microparticle suspension as flowing anode for manganese dioxide rechargeable flow battery[J]. Journal of Power Sources, 2014, 248:962-968.
[51] CHEN H N, ZHOU Y C, LU Y C. Lithium-organic nanocomposite suspension for high-energy-density redox flow batteries[J]. ACS Energy Letters, 2018, 3(8):1991-1997.
[52] ZHANG X F, ZHANG P Y, CHEN H N. Organic multiple redox se-mi-solid-liquid suspension for Li-based hybrid flow battery[J]. ChemSusChem, 2021, 14:1-9.
[53] XING X Q, LIU Q H, LI J, et al. A nonaqueous all organic semisolid flow battery[J]. Chemical Communications, 2019, 55(94):14214-14217.
[54] YAN W, WANG C X, TIAN J Q, et al. All-polymer particulate sl-urry batteries[J]. Nature Communications, 2019, 10(1).Doi: 10.1038/s41467-019-10607-0.
[55] CAO H J, SI S H, XU X B, et al. Electrochemical study of a three-dimensional Zn-Mn alloy//Mn-doped polyaniline suspension flow battery with enhanced electrochemical performance[J]. Interna-tional Journal of Electrochemical Science, 2020, 15:4188-4202.
[56] MUNOZ-TORRERO D, PALMA J, MARCILLA R, et al. Al-ion battery based on semisolid electrodes for higher specific energy and lower cost[J]. ACS Applied Energy Materials, 2020, 3(3):2285-2289.
[57] PETEK T J, HOYT N C, SAVINELL R F, et al. Slurry electrodes for iron plating in an all-iron flow battery[J]. Journal of Power So-urces, 2015, 294:620-626.
Outlines

/