Reviews and Special Topics

Research progress of adsorption removal of hydrogen sulfide by smelting waste slag

  • Qi JIANG ,
  • Yongmei HE ,
  • Yonglin WU ,
  • Ming JIANG
Expand
  • College of Resources and Environment,Yunnan Agricultural University,Kunming 650201,China

Received date: 2021-02-10

  Online published: 2021-11-15

Abstract

Hydrogen sulfide(H2S) is a kind of highly toxic pollutant which seriously endangers atmospheric environment and human health.H2S widely exists in nature and many production processes.Dry desulfurization is widely used in the removal of H2S-containing exhaust gas due to its advantages such as easy operation,strong stability and high desulfurization efficiency.Adsorption is the most common method of dry desulfurization.However,the adsorbent is consumed in large quantities during the adsorbing process,which restricts the desulfurization effect and increases the cost.Smelting waste slag is a potential desulfurizer,which has the characteristics of wide sources,large quantity and excellent surface physicochemical properties.The research progress of H2S removal by different adsorbents of smelting waste slags was summarized,its advantages and disadvantages were analyzed,and factors of affecting adsorption and regeneration of adsorbent were discussed.Finally,in view of the existing problems such as single research scheme and few modification methods of adsorbent,future research directions were proposed,including setting up multi-component dynamic breakthrough adsorption test and exploring a variety of modification methods.

Cite this article

Qi JIANG , Yongmei HE , Yonglin WU , Ming JIANG . Research progress of adsorption removal of hydrogen sulfide by smelting waste slag[J]. Inorganic Chemicals Industry, 2021 , 53(11) : 36 -41 . DOI: 10.19964/j.issn.1006-4990.2021-0095

References

[1] 刘新鹏. 用于硫化氢脱除与硫资源回收的绿色脱硫新体系性能研究[D]. 济南:山东大学, 2017.
[2] 郑双来, 金顺亮, 李飞, 等. 一起下水道窨井内发生的急性硫化氢中毒事件调查[J]. 环境与职业医学, 2016(8):789-790.
[3] DARAEE M, GHASEMY E, RASHIDI A. Effective adsorption of hy-drogen sulfide by intercalation of TiO2 and N-doped TiO2 in grap-hene oxide[J]. Journal of Environmental Chemical Engineering, 2020, 8.Doi: 10.1016/j.jece.2020.103836.
[4] COSTA C, CORNACCHIA M, PAGLIERO M, et al. Hydrogen sulfi-de adsorption by iron oxides and their polymer composites:A case-study application to biogas purification[J]. Materials, 2020, 13.Doi: 10.3390/ma13214725.
[5] GUO Q, QI G S, LIU Y Z. Study on the selective absorption of hydro-gen sulfide from coal gas with high gravity technology[J]. Chemical Engineering Transactions, 2018, 69:187-192.
[6] 姜怡娇, 宁平. 硫化氢废气净化进展[J]. 云南环境科学, 2002, 21(3):40-44.
[7] 吴建华, 邱信欣, 刘锋, 等. 生物滴滤塔处理硫化氢废气[J]. 化工环保, 2019(3):278-292.
[8] 王帆. 生物膜填料塔净化中低浓度硫化氢臭气的研究[D]. 哈尔滨:东北农业大学, 2004.
[9] PELUSO A, GARGIULO N, APREA P, et al. Nanoporous materials as H2S adsorbents for biogas purification:A review[J]. Separation and Purification Reviews, 2019, 48(1):78-89.
[10] SHEN F, LIU J, ZHANG Z, et al. Density functional study of hydro-gen sulfide adsorption mechanism on activated carbon[J]. Fuel Processing Technology, 2018, 171:258-264.
[11] KHABAZIPOUR M, ANBIA M. Removal of hydrogen sulfide from gas streams using porous materials:A review[J]. Industrial & Engineering Chemistry Research, 2019, 58(49):22133-22164.
[12] YANG K J, PAN T T, ZHAO Q, et al. Dual-function ultrafiltration membrane constructed from pure activated carbon particles via facile nanostructure reconstruction for high-efficient water purification[J]. Carbon, 2020, 168:254-263.
[13] SANTHANA R D, NAGARAJAN S V, RAMAN T, et al. Remediation of textile effluents for water reuse:Decolorization and desalination using Escherichia fergusonii followed by detoxification with activated charcoal[J]. Journal of Environmental Management, 2020, 277.Doi: 10.1016/J.JENVMAN.2020.111406.
[14] WESTMORELAND P R, HARRISON D P. Evaluation of candidate solids for high-temperature desulfurization of low-Btu gases[J]. Environmental Science & Technology, 1976, 10(7):659-661.
[15] FLYTZANI-STEPHANOPOULOS M, SAKBODIN M, WANG Z. Regenerative adsorption and removal of H2S from hot fuel gas streams by rare earth oxides[J]. Science, 2006, 312:1508-1510.
[16] MAHIEUX P Y, AUBERT J E, ESCADEILLAS G. Utilization of weathered basic oxygen furnace slag in the production of hydraulic road binders[J]. Construction and Building Materials, 2009, 23(2):742-747.
[17] SHI C, QIAN J. High performance cementing materials from indus-trial slags:A review[J]. Resources,Conservation and Recycling, 2000, 29(3):195-207.
[18] YANG H, CAO J W, WANG Z, et al. Discovery of impurities exist-ing state in carbide slag by chemical dissociation[J]. International Journal of Mineral Processing, 2014, 130:66-73.
[19] 张丰, 莫立武, 邓敏. 碳化养护对钢渣混凝土强度和体积稳定性的影响[J]. 硅酸盐学报, 2016, 44(5):640-646.
[20] 高本恒, 郝以党, 张淑苓, 等. 钢渣综合利用现状及发展趋势[J]. 环境工程, 2016, 34(增刊1) :776-779.
[21] MONTES-MORÁN M A, CONCHESO A, CANALS-BATLLE C, et al. Linz-Donawitz steel slag for the removal of hydrogen sulfide at room temperature[J]. Environmental Science & Technology, 2012, 46(16):8992-8997.
[22] SARPERI L, SURBRENAT A, KERIHUEL A, et al. The use of an industrial by-product as a sorbent to remove CO2 and H2S from bio-gas[J]. Journal of Environmental Chemical Engineering, 2014, 2:1207-1213.
[23] CHETRI J K, REDDY K R, GRUBB D G. Carbon-dioxide and hy-drogen-sulfide removal from simulated landfill gas using steel slag[J]. Journal of Environmental Engineering, 2020, 146(12).Doi: 10.1061/(ASCE)EE.1943-7870.0001826.
[24] 林聪. 钢渣与铬渣净化硫化氢的性能与机理研究[D]. 济南:山东大学, 2013.
[25] 刘明阳, 陈立, 董秋花, 等. 铬渣比例影响偏高岭土矿物聚合物固化效果的研究[J]. 环境科学与技术, 2020, 43(8):152-155.
[26] PAHRORAJI M E H M, SAMAN H M, RAHMAT M N, et al. Prop erties of coal ash foamed brick stabilised with hydrated lime-acti-vated ground granulated blastfurnace slag[J]. Construction and Building Materials, 2020, 235.Doi: 10.1061/(ASCE)EE.1943-7870.0001826.
[27] WU H W, XIE M Y, LEUNG A K, et al. Removal of hydrogen sul-fide using soil amended with ground granulated blast-furnace slag[J]. Journal of Environmental Engineering, 2017, 143(7).Doi: 10.1061/(ASCE)EE.1943-7870.0001206.
[28] RANDHAWA N S, DAS N N, JANA R K. Selenite adsorption using leached residues generated by reduction roasting-ammonia leach-ing of manganese nodules[J]. Journal of Hazardous Materials, 2012, 241/242:486-492.
[29] 白志民, 尹才硚, 蒋训雄, 等. 大洋多金属结核与富钴结壳浸出渣的纳米属性[J]. 科学通报, 2002, 47(11):869-872.
[30] 陈冬, 余超, 陈天虎, 等. 氨浸渣高温脱除硫化氢的性能及可再生性[J]. 硅酸盐学报, 2015, 43(8):1167-1171.
[31] 常冬寅. 大洋锰结核氨浸渣的表征及其对气体中H2S的去除[D]. 合肥:合肥工业大学, 2010.
[32] CHANDRA K S, KRISHNAIAH S, REDDY N G, et al. Strength development of geopolymer composites made from red mud-fly ash as a subgrade material in road construction[J]. Journal of Hazardo-us,Toxic,and Radioactive Waste, 2021, 25(1).Doi: 10.1061/(ASCE)HZ.2153-5515.0000575.
[33] 朱军, 兰建凯. 赤泥的综合回收与利用[J]. 矿产保护与利用, 2008(2):52-54.
[34] 南相莉, 张廷安, 刘燕, 等. 我国赤泥综合利用分析[J]. 过程工程学报, 2010(10):264-270.
[35] 何奥平, 曾晓乐, 曾建民, 等. 拜耳法赤泥碳热还原制备铁合金[J]. 机械工程材料, 2016, 40(5) :47-56.
[36] WANG W L, WANG X J, ZHU J P, et al. Experimental investiga-tion and modeling of sulfoaluminate cement preparation using de-sulfurization gypsum and red mud[J]. Industrial&Engineering Che-mistry Research, 2013, 52(3):1261-1266.
[37] 姜怡娇. 赤泥脱硫剂净化低浓度硫化氢废气的实验研究[D]. 昆明:昆明理工大学, 2003.
[38] SAHU R C, PATEL R, RAY B C. Removal of hydrogen sulfide us-ing red mud at ambient conditions[J]. Fuel Processing Technology, 2011, 92(8):1587-1592.
[39] MASUDA J, FUKUYAMA J, FUJII S. Effects of temperature and humidity on the removal of hydrogen sulfide by activated carbon[J]. Japan Society for Atmospheric Environment, 1998, 33(1):10-15.
[40] 黄驰, 闫楠, 郭家旺, 等. 三乙胺修饰聚苯乙烯微球选择性去除水中的硝酸盐[J]. 中国给水排水, 2019, 35(19):77-81.
Outlines

/