Reviews and Special Topics

Research progress of conductivity of nano ScSZ-based electrolyte at medium and low temperature

  • Tianquan Liang ,
  • Yan Guo ,
  • Xiyong Chen ,
  • Feng Zhan ,
  • Xiuhai Zhang ,
  • Jianmin Zeng
Expand
  • 1. School of Resources,Environment and Materials,Guangxi University,Nanning 530004,China
    2. Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials
    3. Center of Ecological Collaborative Innovation for Aluminum Industry in Guangxi

Received date: 2020-06-26

  Online published: 2021-07-08

Abstract

Solid oxide fuel cell(SOFC) is one of the most promising fuel cells,which is efficient and clean and suitable for a variety of fuel gases.Sc2O3 doped ZrO2(ScSZ) series(including single or binary oxides doped ScSZ) makes zirconia-based electrolyte shows excellent ionic conductivity.The nano-crystallization of ScSZ-based electrolyte has been widely studied due to its excellent electrical properties.However,ScSZ-based electrolyte will undergo phase transition at medium and low tem-perature,resulting in rhombic phase with low conductivity,which affects its ionic conductivity.ScSZ electrolytes doped with single or binary oxides were systematically summarized.The results showed that multi-oxides doped ScSZ could effectively pre-vent from phase transformation at medium and low temperatures,stabilize cubic ScSZ.Nano-crystallization ScSZ based elec-trolytes prepared by different methods could improve the ionic conductivity very well.The development direction of ScSZ se-ries in medium and low temperature(600~800 ℃) was proposed:the conductivity of grain and grain boundary could be im-proved through optimizing the doped composition,nano-crystallization and electrolyte materials with novel structures could be prepared by different preparation methods and parameters.

Cite this article

Tianquan Liang , Yan Guo , Xiyong Chen , Feng Zhan , Xiuhai Zhang , Jianmin Zeng . Research progress of conductivity of nano ScSZ-based electrolyte at medium and low temperature[J]. Inorganic Chemicals Industry, 2021 , 53(6) : 87 -94 . DOI: 10.19964/j.issn.1006-4990.2020-0369

References

[1] 吴雨泽, 王宇旸, 范红途. 固体氧化物燃料电池(SOFC)系统的研究现状[J]. 能源研究与利用, 2019(1):40-46.
[2] Ivers-Tiffee E, Weber A, Herbstritt D. Materials and technologies for SOFC-components[J]. Journal of the European Ceramic Society, 2001,21(10):1805-1811.
[3] Raharjo J, Ali S A M, Arjasa O P, et al. Synjournal and characteriza-tion of uniform-sized cubic ytterbium scandium co-doped zirconium oxide(1Yb10ScSZ) nanoparticles by using basic amino acid as or-ganic precursor[J]. International Journal of Hydrogen Energy, 2017,42(14):9274-9283.
[4] Mohammadreza D, Muhamad A M Y, Noordin M Y. Investigation of three steps of hot corrosion process in Y2O3 stabilized ZrO2 coatings including nano zones[J]. Rare Earths, 2014,32(10):989-1002.
[5] Lu X, Zhao J, Wang X. Bi2O3 nanoporous filmfabricated by anodic oxidation and its photoelectrochemical performance[J]. Solid State Electrochem, 2013,17(4):1215-1219.
[6] Patakangas J, Ma Y, Jing Y. Review and analysis of characterization methods and ionic conductivities for lowtemperature solid oxide fuel cells(LT-SOFC)[J]. Power Sources, 2014,263:315-331.
[7] Rajeswari K, Suresh M B, Chakravarty D, et al. Effect of nano-grain size on the ionic conductivity of spark plasma sintered 8YSZ elec-trolyte[J]. International Journal of Hydrogen Energy, 2012,37(1):511-517.
[8] Jiang H, Guo R, Ren J. Effects of ZnO additive on sinterability and electrochemical performances of 8YSZ electrolyte[J]. Journal of the Chinese Ceramic society, 2010,33(8):1434-1439.
[9] Tiunova O V, Khabas T A, Bredikhin S I, et al. Zirconia-based solid electrolyte obtained by tape casting[J]. Inorganic Materials:App-lied Research, 2016,7(2):278-284.
[10] Souza J P, Grosso R L, Muccillo R, et al. Phase composition and io-nic conductivity of zirconia stabilized with scandia and europia[J]. Materials Letters, 2018,229:53-56.
[11] Ng C K, Ramesh S, Tan C Y, et al. Microwave sintering of ceria-do-ped scandia stabilized zirconia as electrolyte for solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2016,41(32):14184-14190.
[12] Kumar A, Jaiswal A, Sanbui M, et al. Scandia stabilized zirconia-ceria solid electrolyte (xSc1CeSZ,5<x<11) for IT-SOFCs:Struc-ture and conductivity studies[J]. Scripta Materialia, 2016,121:10-13.
[13] Fabbri E, Pergolesi D, Traversa E. Electrode materials:A challenge for the exploitation of protonic solid oxide fuel cells[J]. Science and Technology of Advanced Materials, 2010,11(4):044301-044309.
[14] Lakshmi V V, Bauri R, Gandhi A S, et al. Synjournal and characte-rization of nanocrystalline ScSZ electrolyte for SOFCs[J]. Interna-tional Journal of Hydrogen Energy, 2011,36(22):14936-14942.
[15] Xue Q, Huang X, Wang L, et al. Computational and experimental investigations of defect interaction and ionic conductivity in doped zirconia[J]. Physical Review Applied, 2018,10(1).Doi: 10.1103/PhysRevApplied.10.014032.
[16] Tan J, Su Y, Tang H, et al. Effect of calcined parameters on micro-structure and electrical conductivity of 10Sc1CeSZ[J]. Journal of Alloys and Compounds, 2016,686:394-398.
[17] Chen X, Zhou M, Shi J, et al. Microstructure and electrical conduc-tivity of A-site fully stoichiometric Na0.5+xBi0.5-xTiO3-δ with different Na/Bi ratios[J]. Ceramics International, 2019,45(9):11438-11447.
[18] 徐高峰. 氧化锆纳米粉体的制备及稳定性研究[D]. 郑州:郑州大学, 2017.
[19] Raza M, Cornil D, Cornil J, et al. Oxygen vacancy stabilized zirco-nia (OVSZ):a joint experimental and theoretical study[J]. Scri-pta Materialia, 2016,124:26-29.
[20] Chen C, Liang T, Guo Y, et al. Effect of scandia content on the hot corrosion behavior of Sc2O3 and Y2O3 co-doped ZrO2 in Na2SO4+ V2O5 molten salts at 1 000 ℃[J]. Corrosion Science, 2019,158. Doi: 10.1016/j.corsci.2019.108094.
[21] Borik M A, Bredikhin S I, Kulebyakin A V, et al. Melt growth,st-ructure and properties of(ZrO2)1-x(Sc2O3) x solid solution crystals (x=0.035-0.11)[J]. Journal of Crystal Growth, 2016,443:54-61.
[22] Gao Z, MognI L V, Miller E C, et al. A perspective on low-tempera-ture solid oxide fuel cells[J]. Energy & Environmental Science, 2016,9(5):1602-1644.
[23] Brodnikovska I, Korsunska N, Khomenkova L, et al. Grains,grain boundaries and total ionic conductivity of 10Sc1CeSZ and 8YSZ solid electrolytes affected by crystalline structure and dopant co-ntent[J]. Materials Today:Proceedings, 2019(6):79-85.
[24] Fini D, Badwal S P S, Giddey S, et al. Evaluation of Sc2O3-CeO2- ZrO2 electrolyte-based tubular fuel cells using activated charcoal and hydrogen fuels[J]. Electrochimica Acta, 2018,259:143-150.
[25] Jais A A, Ali S A M, Anwar M, et al. Enhanced ionic conductivity of scandia-ceria-stabilized-zirconia(10Sc1CeSZ) electrolyte synt-hesized by the microwave-assisted glycine nitrate process[J]. Ce-ramics International, 2017,43(11):8119-8125.
[26] Tan J, Su Y, Tang H, et al. Effect of calcined parameters on micro-structure and electrical conductivity of 10Sc1CeSZ[J]. Journal of Alloys and Compounds, 2016,686:394-398.
[27] Liu M, He C R, Wang W G, et al. Synjournal and characterization of 10Sc1CeSZ powders prepared by a solid-liquid method for electro-lyte-supported solid oxide fuel cells[J]. Ceramics International, 2014,40(4):5441-5446.
[28] Liu M, He C, Wang J, et al. Investigation of (CeO2)x(Sc2O3)(0.11-x)(ZrO2)0.89(x=0.01~0.10) electrolyte materi-als for intermediate-temperature solid oxide fuel cell[J]. Journal of Alloys and Compounds, 2010,502(2):319-323.
[29] Abbas H A, Argirusis C, Kilo M, et al. Preparation and conductivity of ternary scandia-stabilised zirconia[J]. Solid State Ionics, 2011,184(1):6-9.
[30] Wang Z, Cheng M, Bi Z, et al. Structure and impedance of ZrO2 do-ped with Sc2O3 and CeO2[J]. Materials Letters, 2015,59(19/20):2579-2582.
[31] 刘丽伟. Bi2O3/YSZ和Bi2O3/YBSZ电解质的合成制备和表征[D]. 杭州:浙江大学, 2016.
[32] Bai B, Sammes N M, Smirnova A L. Physical and electrochemical characterization of Bi2O3-doped scandia stabilized zirconia[J]. Journal of Power Sources, 2008,176(1):76-81.
[33] Hirano M, Oda T, Ukai K, et al. Suppression of rhombohedral-phase appearance and low-temperature sintering of scandia-doped cubic-zirconia[J]. Journal of the American Ceramic Society, 2002,85(5):1336-1338.
[34] Hirano M, Oda T, Ukai K, et al. Effect of Bi2O3 additives in Sc sta-bilized zirconia electrolyte on a stability of crystal phase and elec-trolyte properties[J]. Solid State Ionics, 2003,158(3/4):215-223.
[35] Sarat S, Sammes N, Smirnova A. Bismuth oxide doped scandia-sta-bilized zirconia electrolyte for the intermediate temperature solid oxide fuel cells[J]. Journal of Power Sources, 2006,160(2):892-896.
[36] Bai B, Mcphee W A, Smirnova A, et al. A comparison and charac-terization of CeO2-doped and Bi2O3-doped scandia stabilized zi-rconia as IT-SOFC electrolytes[J]. ECS Transactions, 2007,7(1):2213-2221.
[37] Agarkov D A, Borik M A, Bredikhin S I, et al. Transport properties of single crystals of solid electrolytes based on ZrO2-Sc2O3 co-do-ped by scandia,yttria,ytterbia and ceria[J]. Chemical Probhems, 2019,2(17):235-245.
[38] Omar S, Najib W B, Chen W, et al. Electrical conductivity of 10 mol % Sc2O3-1 mol % M2O3-ZrO2 ceramics[J]. Journal of the American Ceramic Society, 2012,95(6):1965-1972.
[39] Jeon H J, Kim K J, Kim M Y, et al. Fabrication and electrochemical characterization of SOFC single cell with 6Yb4ScSZ electrolyte po-wder by tape-casting and co-sintering[J]. Journal of the Ceramic Society of Japan, 2015,123(1436):229-234.
[40] Yuan F, Wang J, Miao H, et al. Investigation of the crystal structure and ionic conductivity in the ternary system(Yb2O3)x-(Sc2O3)(0.11-x)- (ZrO2)0.89(x=0~0.11)[J]. Journal of Alloys and Compounds, 2013,549:200-205.
[41] Alfeche D M, Cervera R B. Highly conducting Sc and Y co-doped ZrO2 thin film solid electrolyte on a porous Ni/YSZ electrode pre-pared via simple drop-coating method[J]. Ceramics International, 2020,46(8):10561-10567.
[42] Accardo G, Agli G D, Frattini D, et al. Electrical behaviour and mi-crostructural characterization of magnesia co-doped ScSZ nanopo-wders synthesized by urea co-precipitation[J]. Chemical Engineer-ing Transactions, 2017,57:1345-1350.
[43] Kumar A, Singh R P, Singh S, et al. Phase stability and ionic con-ductivity of cubic xNb2O5-(11-x)Sc2O3-ZrO2(0≤x≤4)[J]. Jour-nal of Alloys and Compounds, 2017,703:643-651.
[44] Pastor M, Prasad A, Biswas K, et al. Microstructural and impedance study of nanocrystalline lanthana-doped scandia-stabilized zirco-nia[J]. Journal of Nanoparticle Research, 2012,14(8):1-11.
[45] Choi Y, Lee S, Wackerl J, et al. Fabrication of scandia-stabilized zirconia electrolyte with a porous and dense composite layer for so-lid oxide fuel cells[J]. Ceramics International, 2012,38:5485-5488.
[46] Omar S, Najib W B, Bonanos N. Conductivity ageing studies on 1M10ScSZ(M 4+=Ce,Hf)[J]. Solid State Ionics, 2011,189(1):100-106.
[47] Guo X. Roles of alumina in zirconia for functional applications[J]. Journal of the American Ceramic Society, 2003,86(11):1867-1873.
[48] Lybye D, Liu Y L. A study of complex effects of alumina addition on conductivity of stabilised zirconia[J]. Journal of the European Ceramic Society, 2006,26(4/5):599-604.
[49] Guo C X, Wang J X, He C R. et al. Effect of alumina on the proper-ties of ceria and scandia co-doped zirconia for electrolyte-suppo-rted SOFC[J]. Ceramics International, 2013,39(8):9575-9582.
[50] Feighery A J, Irvine J T S. Effect of Alumina additions upon elec-trical properties of 8mol% yttria-stabilised zirconia[J]. Solid State Ionics, 1999,121(1/2/3/4):209-216.
[51] Lv Z, Guo R, Yao P, et al. Effects of Al2O3 and/or CaO on properties of yttria stabilized zirconia electrolyte doped with multi-elemen-ts[J]. Materials & Design, 2007,28(4):1399-1403.
[52] Agarkov D A, Borik M A, Bredikhin S I, et al. Structure and trans-port properties of zirconia crystals co-doped by scandia,ceria and yttria[J]. Journal of Materiomics. 2019,5(2):273-279.
[53] Lv Z G, Yao P, Guo R S, et al. Study on zirconia solid electrolytes doped by complex additives[J]. Materials Science and Engineer-ing:A, 2007,458(1/2):355-360.
[54] Knoner G, Reimann K, Rower R, et al. Enhanced oxygen diffusivity in interfaces of nanocrystalline ZrO2·Y2O3[J]. Proceedings of the National Academy of Sciences, 2003,100(7):3870-3873.
[55] Garcia-Barriocanal J, Rivera-Calzada A, Varela M, et al. Colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 heterostructures[J]. Science, 2008,321(5889):676-680.
[56] 程浩. 纳米氧化锆粉体抗团聚老化性的研究[D]. 武汉:湖北工业大学, 2009.
[57] Xue Q N, Huang X W, Zhang H, et al. Synjournal and characteriza-tion of high ionic conductivity ScSZ core/shell nanocomposites[J]. Journal of Rare Earths, 2017,35(6):567-573.
[58] Kazlauskas S, Kazakevicius E, Kezionis A. et al. Electrical proper-ties of scandia and ceria-stabilized zirconia ceramics[J]. Solid State Ionics, 2017,310:143-147.
[59] Hongmin A O, Xiangsheng L I U, Zhang H, et al. Preparation of ac-andia stabilized zirconia powder using microwave-hydrothermal method[J]. Journal of Rare Earths, 2015,33(7):746-751.
[60] Yao L, Liu W, Ou G, et al. Phase stability and high conductivity of ScSZ nanofibers:Effect of the crystallite size[J]. Journal of Mate-rials Chemistry A, 2015,3(20):10795-10800.
[61] Cho G Y, Lee Y H, Hong S W, et al. High-performance thin film solid oxide fuel cells with scandia-stabilized zirconia(ScSZ) thin film electrolyte[J]. International Journal of Hydrogen Energy, 2015,40(45):15704-15708.
Outlines

/