Inorganic Noval Materials—Energy Storage and Conversion

Research progress of nano MOFs and their derivatives for supercapacitors

  • Wei Shen ,
  • Sinan Wang ,
  • Xuemei Liang ,
  • Jinyun Wei ,
  • Yujie Pan ,
  • Tiantian Nong ,
  • Yan Zhou ,
  • Xuecai Tan ,
  • Zaiyin Huang
Expand
  • Chemistry and Chemical Engineering College,Guangxi University for Nationalities,Naning 530006,China

Received date: 2021-03-28

  Online published: 2021-07-08

Abstract

Metal-organic frameworks(MOFs) have attracted extensive attention due to their large specific surface areas,controllable pore structures and abundant active sites.Recently,MOFs-based materials were widely used in the field of ener-gy storage and conversion; however,the low stability and low conductivity of most MOFs-based materials limit their practical applications.By modifying MOFs based materials,such as the use of high conjugated organic ligands could increase the stabi-lity of MOFs materials or MOFs derivatives could improve their redox active sites and electrical conductivity,thus,the elec-trochemical performances of MOFs-based electrode materials can be improved.In this review,we mainly introduce progress of the pristine MOFs and MOFs derivatives including carbon materials,metal oxides,metal sulfides,metal hydroxide and metal phosphide, etc.in the field of supercapacitor.The results show that multi-metallic MOFs or their derivatives are beneficial to improve the electrochemical performances,the conductive MOFs and the carbon materials,which are derived from MOFs materials,are beneficial to improve the electrical conductivity of electrode materials.Finally, the outlook and prospect of MOFs-based electrode materials for electrochemical energy storage are also point out.The morphology, components and conductivity of the electrode materials are research develop direction in the future work.

Cite this article

Wei Shen , Sinan Wang , Xuemei Liang , Jinyun Wei , Yujie Pan , Tiantian Nong , Yan Zhou , Xuecai Tan , Zaiyin Huang . Research progress of nano MOFs and their derivatives for supercapacitors[J]. Inorganic Chemicals Industry, 2021 , 53(6) : 79 -86 . DOI: 10.19964/j.issn.1006-4990.2021-0226

References

[1] Shao Y, El-Kady M F, Sun J, et al. Design and mechanisms of asy-mmetric supercapacitors[J]. Chemical Reviews, 2018,118(18):9233-9280.
[2] Chen X, Paul R, Dai L M, et al. Carbon-based supercapacitors for efficient energy storage[J]. National Science Review, 2017,4(3):453-489.
[3] Trickett C A, Helal A, Al Maythalony B A, et al. The chemistry of metal-organic frameworks for CO2 capture,regeneration and conver-sion[J]. Nature Reviews Materials, 2017,2:17045-17060.
[4] Wei Y S, Zhang M, Zou R Q, et al. Metal-organic framework-based catalysts with single metal sites[J]. Chemical Reviews, 2020,120(21):12089-12174.
[5] Zhang Y M, Yuan S, Day G, et al. Luminescent sensors based on me-tal-organic frameworks[J]. Coordination Chemistry Reviews, 2018,354:28-45.
[6] Xiao X, Zou L L, Pang H, et al. Synjournal of micro/nanoscaled metal-organic frameworks and their direct electrochemical applications[J]. Chemical Society Reviews, 2020,49(1):301-331.
[7] Wang L, Han Y Z, Feng X, et al. Metal-organic frameworks for ener-gy storage:Batteries and supercapacitors[J]. Coordination Chem-istry Reviews, 2016,307:361-381.
[8] 陈丹, 杨蓉, 张卫华, 等. 有机金属骨架材料在电化学储能领域中的研究进展[J]. 化工进展, 2018,37(2):628-636.
[9] 李怡霏, 陈言权, 陈雪珂, 等. 金属有机骨架材料在超级电容器中的应用进展[J]. 上海工程技术大学学报, 2019,33(2):97-101.
[10] Liu X, Shi C, Zhai C, et al. A Cobalt-based layered metal-organic framework as an ultrahigh capacity supercapacitor electrode mate-rial[J]. ACS Applied Materials & Interfaces, 2016,8(7):4585-4591.
[11] Yang J, Ma Z, Gao W, et al. Layered structural Co-based MOF with conductive network frames as a new supercapacitor electrode[J]. Chemistry-A European Journal, 2017,23(3):631-636.
[12] Li W H, Ding K, Tian H R, et al. Conductive metal-organic frame-work nanowire array electrodes for high-performance solid-state supercapacitors[J]. Advanced Functional Materials, 2017,27.Doi: 10.1002/adfm.201770165.
[13] Liu J, Zhou Y, Xie Z, et al. Conjugated copper-catecholate frame-work electrodes for efficient energy storage[J]. Angewandte Che-mie International Edition, 2020,59(3):1081-1086.
[14] Yang J, Xiong P, Zheng C, et al. Metal-organic frameworks:a new promising class of materials for a high performance supercapacitor electrode[J]. Journal of Materials Chemistry A, 2014,39(2):16640-16644.
[15] Yang C, Li X, Yu L, et al. A new promising Ni-MOF superstruc-ture for high-performance supercapacitors[J]. Chemical Commu-nications, 2020,56(12):1803-1806.
[16] Chi Y, Yang W, Xing Y, et al. Ni/Co bimetallic organic framework nanosheet assemblies for high-performance electrochemical energy storage[J]. Nanoscale, 2020,12(19):10685-10692.
[17] Gholipour-Ranjbar H, Soleimani M, Naderi H R, et al. Application of Ni/Co-based metal-organic frameworks(MOFs) as an advanced electrode material for supercapacitors[J]. New Journal of Chemi-stry, 2016,40(11):9187-9193.
[18] Wang Y, Liu Y, Wang H, et al. Ultrathin NiCo-MOF nanosheets for high-performance supercapacitor electrodes[J]. ACS Applied Energy Materials, 2019,2(3):2063-2071.
[19] Liang Y, Yao W, Duan J, et al. Nickel cobalt bimetallic metal-orga-nic frameworks with a layer-and-channel structure for high-per-formance supercapacitors[J]. Journal of Energy Storage, 2021,33. Doi: 10.1016/j.est.2020.102149.
[20] Yang J, Zheng C, Xiong P, et al. Zn-doped Ni-MOF material with a high supercapacitive performance[J]. Journal of Materials Che-mistry A, 2014,2(44):19005-19010.
[21] Ma H M, Yi J W, Li S, et al. Stable bimetal-MOF ultrathin nano-sheets for pseudocapacitors with enhanced performance[J]. Inor-ganic Chemistry, 2019,58(15):9543-9547.
[22] Mohd Zain N K, Vijayan B L, Misnon I I, et al. Direct growth of triple cation metal-organic framework on a metal substrate for elec-trochemical energy storage[J]. Industrial & Engineering Chemistry Research, 2018,58(2):665-674.
[23] Liang Z, Qu C, Guo W, et al. Pristine metal-organic frameworks and their composites for energy storage and conversion[J], Advanced Materials, 2018,30(37).Doi: 10.1002/adma.201702891.
[24] Hou C C, Xu Q. Metal-organic frameworks for energy[J], Advanc-ed Energy Materials, 2018,9(23).Doi: 10.1002/aenm.201801307.
[25] Zheng S, Li X, Yan B, et al. Transition-metal(Fe,Co,Ni) based metal-organic frameworks for electrochemical energy storage[J]. Advanced Energy Materials, 2017,7(18).Doi: 10.1002/aenm.201602733.
[26] Zhao Z, Liu S, Zhu J, et al. Hierarchical nanostructures of nitrogen-doped porous carbon polyhedrons confined in carbon nanosheets for high-performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2018,10(23):19871-19880.
[27] Gan Q, Liu S, Zhao K, et al. Graphene supported nitrogen-doped porous carbon nanosheets derived from zeolitic imidazolate frame-work for high performance supercapacitors[J]. RSC Advances, 2016,6(82):78947-78953.
[28] Yao Y, Liu P, Li X, et al. Nitrogen-doped graphitic hierarchically porous carbon nanofibers obtained via bimetallic-coordination or-ganic framework modification and their application in supercapac-itors[J]. Dalton Transactions, 2018,47(21):7316-7326.
[29] Cao X M, Sun Z J, Zhao S Y, et al. MOF-derived sponge-like hier-archical porous carbon for flexible all-solid-state supercapacito-rs[J]. Materials Chemistry Frontiers, 2018,2(9):1692-1699.
[30] Liu Y, Li G, Guo Y, et al. Flexible and binder-free hierarchical po-rous carbon film for supercapacitor electrodes derived from MOFs/CNT[J]. ACS Applied Materials & Interfaces, 2017,9(16):14043-14050.
[31] Zhang Y Z, Wang Y, Xie Y L, et al. Porous hollow Co3O4 with rhom-bic dodecahedral structures for high-performance supercapacito-rs[J]. Nanoscale, 2014,6(23):14354-14359.
[32] Wei G, Zhou Z, Zhao X, et al. Ultrathin metal-organic framework nanosheet-derived ultrathin Co3O4 nanomeshes with robust oxygen-evolving performance and asymmetric supercapacitors[J]. ACS Applied Materials & Interfaces, 2018,10(28):23721-23730.
[33] Yang J, Wei F, Sui Y, et al. Co3O4 nanocrystals derived from a ze-olitic imidazolate framework on Ni foam as high-performance su-percapacitor electrode material[J]. RSC Advances, 2016,6(66):61803-61808.
[34] Ensafi A A, Moosavifard S E, Rezaei B, et al. Engineering onion-like nanoporous CuCo2O4 hollow spherees derived from bimetal-organic frameworks for high-performance asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2018,6(22):10497-10506.
[35] Javed M S, Shaheen N, Hussain S, et al. An ultra-high energy den-sity flexible asymmetric supercapacitor based on hierarchical fab-ric decorated with 2D bimetallic oxide nanosheets and MOF-deri-ved porous carbon polyhedral[J]. Journal of Materials Chemistry A, 2019,7(3):946-957.
[36] Guan B Y, Kushima A, Yu L, et al. Coordination polymers derived general synjournal of multishelled mixed metal-oxide particles for hybrid supercapacitors[J], Advanced Materials, 2017,29(17). Doi: 10.1002/adma.201605902.
[37] Jiang Z, Lu W, Li Z, et al. Synjournal of amorphous cobalt sulfide polyhedral nanocages for high performance supercapacitors[J]. Journal of Materials Chemistry A, 2014,2(23):8603-8606.
[38] Zou K Y, Liu Y C, Jiang Y F, et al. Benzoate acid-dependent lattice dimension of Co-MOFs and MOF-derived CoS 2@CNTs with tun-able pore diameters for supercapacitors[J]. Inorganic Chemistry, 2017,56(11):6184-6196.
[39] Sun S, Luo J, Qian Y, et al. Metal-organic framework derived hon-eycomb Co9S8@C composites for high-performance supercapacito-rs[J]. Advanced Energy Materials, 2018,8(25).Doi: 10.1002/aenm.201801080.
[40] Qu C, Zhang L, Meng W, et al. MOF-derived α-NiS nanorods on graphene as an electrode for high-energy-density supercapacito-rs[J]. Journal of Materials Chemistry A, 2018,6(9):4003-4012.
[41] Tian D, Chen S, Zhu W, et al. Metal-organic framework derived hierarchical Ni/Ni3S2 decorated carbon nanofibers for high-perfor-mance supercapacitors[J]. Materials Chemistry Frontiers, 2019,3(8):1653-1660.
[42] Li Z X, Yang B L, Jiang Y F, et al. Metal-directed assembly of five 4-connected MOFs:One-pot syntheses of MOF-derived MxSy@C composites for photocatalytic degradation and supercapacitors[J]. Crystal Growth & Design, 2018,18(2):979-992.
[43] Yang Y, Li M L, Lin J N, et al. MOF-derived Ni3S4 encapsulated in 3D conductive network for high-performance supercapacitor[J]. Inorganic Chemistry, 2020,59(4):2406-2412.
[44] Ouyang Y, Zhang B, Wang C, et al. Bimetallic metal-organic frame-work derived porous NiCo2S4 nanosheets arrays as binder-free elec-trode for hybrid supercapacitor[J]. Applied Surface Science, 2021,542.Doi: 10.1016/j.apsusc.2020.148621.
[45] Liu Y, Ma Z, Niu H, et al. MOF-derived Co9S8 polyhedrons on NiCo2S4 nanowires for high-performance hybrid supercapacitors[J]. Inorganic Chemistry Frontiers, 2020,7(21):4092-4100.
[46] Zheng L, Song J, Ye X, et al. Construction of self-supported hier-archical NiCo-S nanosheet arrays for supercapacitors with ultra-high specific capacitance[J]. Nanoscale, 2020,12(25):13811-13821.
[47] Wang S F, Xiao Z Y, Zhai S R, et al. Construction of strawberry-like Ni3S2@Co9S8 heteronanoparticle-embedded biomass-derived 3D N-doped hierarchical porous carbon for ultrahigh energy den-sity supercapacitors[J]. Journal of Materials Chemistry A, 2019,7(29):17345-17356.
[48] Ramachandran R, Lan Y, Xu Z X, et al. Construction of NiCo-lay-ered double hydroxide microspheres from Ni-MOFs for high-per-formance asymmetric supercapacitors[J]. ACS Applied Energy Materials, 2020,3(7):6633-6643.
[49] Jin H, Yuan D, Zhu S, et al. Ni-Co layered double hydroxide on carbon nanorods and graphene nanoribbons derived from MOFs for supercapacitors[J]. Dalton Transactions, 2018,47(26):8706-8715.
[50] Liu S, Xu Y, Wang C, et al. Metal-organic framework derived Ni2P/C hollow microspheres as battery-type electrodes for battery-supercapacitor hybrids[J]. ChemElectroChem, 2019,6(21):5511-5518.
[51] Jiang L, Yan M, Sun L, et al. Hierarchical CoP@Ni2P core-shell nanosheets for ultrahigh energy density asymmetric supercapaci-tors[J]. Inorganic Chemistry Frontiers, 2020,7(16):3030-3038.
[52] Salunkhe R R, Kaneti Y V, Kim J, et al. Nanoarchitectures for me-tal-organic framework-derived nanoporous carbons toward super-capacitor applications[J]. Accounts of Chemical Research, 2016,49(12):2796-2806.
[53] 李璐, 高长青, 刘怡琳, 等. 氮杂化介孔碳制备方法及在超级电容器中的应用进展[J]. 无机盐工业, 2021,53(3):24-29.
[54] Salunkhe R R, Kaneti Y V, Yamauchi Y. Metal-organic framework-derived nanoporous metal oxides toward supercapacitor applica-tions:Progress and prospects[J]. ACS Nano, 2017,11(6):5293-5308.
Outlines

/