Inorganic Chemicals Industry >
Advances in transition metal fluoride phosphate cathode materials for lithium-ion batteries and sodium-ion batteries
Received date: 2019-11-29
Online published: 2020-03-31
With the rapid development of portable electronic products,electric vehicles and energy storage,the demand for high energy density batteries is more and more urgent.Cathode materials are the main limits for the energy-density of batteries.Transition metal fluoride phosphates(A2MPO4F;A=Li,Na;M=Mn,Fe,Co,Ni) is a type of competitive cathode materials with high-capacity(~300 mA·h/g) and high energy density(>1 000 W·h/kg).The research progress related to the A2MPO4F cathode materials on the structures,synthesis methods and improving techniques for electrochemical performance were mainly introduced.The key challenges of A2MPO4F cathode materials faced,especially the difficulties in realizing the two electron reaction,were discussed.Finally,the future trends and perspectives for performance enhancement were prospected.
Yunfei Long , Jing Su , Xiaoyan Lü , Yanxuan Wen . Advances in transition metal fluoride phosphate cathode materials for lithium-ion batteries and sodium-ion batteries[J]. Inorganic Chemicals Industry, 2020 , 52(3) : 28 -34 . DOI: 10.11962/1006-4990.2019-0602
[1] | Yang Z G, Zhang J L, Kintner-Meyer M C W , et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011,111(5):3577-3613. |
[2] | Ding Y L, Cano Z P, Yu A P , et al. Automotive Li ion batteries:current status and future perspectives[J]. Electrochemical Energy Reviews, 2019,2(1):1-28. |
[3] | 李慧, 吴川, 吴锋 , 等. 钠离子电池:储能电池的一种新选择[J]. 化学学报, 2014,72(1):21-29. |
[4] | Andre D, Kim S J, Lamp P , et al. Future generations of cathode materials:an automotive industry perspective[J]. Journal of Materials Chemistry A, 2015,3(13):6709-6732. |
[5] | Wang J J, Sun X L . Olivine LiFePO4:the remaining challenges for future energy storage[J]. Energy & Environmental Science, 2015,8(4):1110-1138. |
[6] | Antipov E V, Khasanova N R, Fedotov S S . Perspectives on Li and transition metal fluoride phosphates as cathode materials for a new generation of Li-ion batteries[J]. IUCrJ, 2015,2(1):85-94. |
[7] | Ellis B L, Makahnouk W R M, Makimura Y , et al. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries[J]. Nature Materials, 2007,6(10):749-753. |
[8] | Recham N, Chotard J N, Dupont L , et al. Ionothermal synjournal of sodium-based fluorophosphate cathode materials[J]. Journal of The Electrochemical Society, 2009,156(12):A993-A999. |
[9] | Sanz F, Parada C, Ruiz-Valero C . Crystal growth,crystal structure and magnetic properties of disodium cobalt fluorophosphates[J]. Journal of Materials Chemistry, 2001,11(1):208-211. |
[10] | Ellis B L, Makahnouk W R M, Rowan-Weetaluktuk W N , et al. Crystal structure and electrochemical properties of A2MPO4F fluorophosphates(A=Na,Li;M=Fe,Mn,Co,Ni)[J]. Chemistry of Materials, 2010,22(3):1059-1070. |
[11] | Smiley D L, Goward G R . Ex situ 23Na solid-state NMR reveals the local Na-ion distribution in carbon-coated Na2FePO4F during electrochemical cycling [J]. Chemistry of Materials, 2016,28(21):7645-7656. |
[12] | Li Q, Liu Z G, Zheng F , et al. Identifying the structural evolution of the sodium ion battery Na2FePO4F cathode[J]. Angewandte Chemie International Edition, 2018,57(37):11918-11923. |
[13] | Song W X, Ji X B, Wu Z P , et al. Na2FePO4F cathode utilized in hybrid-ion batteries:a mechanistic exploration of ion migration and diffusion capability[J]. Journal of Materials Chemistry A, 2014,2(8):2571-2577. |
[14] | Tripathi R, Wood S M, Islam M S , et al. Na-ion mobility in layered Na2FePO4F and olivine Na[Fe,Mn]PO4[J]. Energy & Environmental Science, 2013,6(8):2257-2264. |
[15] | Okada S, Ueno M, Uebou Y , et al. Fluoride phosphate Li2CoPO4F as a high-voltage cathode in Li-ion batteries[J]. Journal of Power Sources, 2005,146(1/2):565-569. |
[16] | Dutreilh M, Chevalier C, El-Ghozzi M , et al. Synjournal and crystal structure of a new lithium nickel fluorophosphate Li2[NiF(PO4)] with an ordered mixed anionic framework[J]. Journal of Solid State Chemistry, 1999,142(1):1-5. |
[17] | Nagahama M, Hasegawa N, Okada S . High voltage performances of Li2NiPO4F cathode with dinitrile-based electrolytes[J]. Journal of The Electrochemical Society, 2010,157(6):A748-A752. |
[18] | Khasanova N R, Drozhzhin O A, Storozhilova D A , et al. New form of Li2FePO4F as cathode material for Li-ion batteries[J]. Chemistry Materials, 2012,24(22):4271-4273. |
[19] | Fedotov S S, Kabanov A A, Kabanova N A , et al. Crystal structure and Li-ion transport in Li2CoPO4F high-voltage cathode material for Li-ion batteries[J]. The Journal of Physical Chemistry C, 2017,121(6):3194-3202. |
[20] | Hadermann J, Abakumov A M, Turner S , et al. Solving the structure of Li ion battery materials with precession electron diffraction:Application to Li2CoPO4F[J]. Chemistry of Materials, 2011,23(15):3540-3545. |
[21] | Okumura T, Shikano M, Yamaguchi Y , et al. Structural changes in Li2CoPO4F during lithium-ion battery reactions[J]. Chemistry of Materials, 2015,27(8):2839-2847. |
[22] | Kim S W, Seo D H, Kim H , et al. A comparative study on Na2MnPO4F and Li2MnPO4F for rechargeable battery cathodes[J]. Physical Chemistry Chemical Physics:PCCP, 2012,14(10):3299-3303. |
[23] | Lee S, Park S S . Lithium transition metal fluorophosphates (Li2CoPO4F and Li2NiPO4F) as cathode materials for lithium ion battery from atomistic simulation[J]. Journal of Solid State Chemistry, 2013,204:329-334. |
[24] | Karakulina O M, Khasanova N R, Drozhzhin O A , et al. Antisite disorder and bond valence compensation in Li2FePO4F cathode for Li-ion batteries[J]. Chemistry of Materials, 2016,28(21):7578-7581. |
[25] | Yu J G, Rosso K M, Zhang J G , et al. Ab initio study of lithium transition metal fluorophosphate cathodes for rechargeable batteries[J]. Journal of Materials Chemistry, 2011,21(32):12054-12058. |
[26] | Zheng Y, Zhang P, Wu S Q , et al. First-principles investigations on the Na2MnPO4F as a cathode material for Na-ion batteries[J]. Journal of The Electrochemical Society, 2013,160(6):A927-A932. |
[27] | Amaresh S, Kim G J, Karthikeyan K , et al. Synjournal and enhanced electrochemical performance of Li2CoPO4F cathodes under high current cycling[J]. Physical Chemistry Chemical Physics, 2012,14(34):11904-11909. |
[28] | Fedotov S S, Kuzovchikov S M, Khasanova N R , et al. Synjournal,structure and electrochemical properties of LiNaCo0.5Fe0.5PO4F fluoride-phosphate[J]. Journal of Solid State Chemistry, 2016,242:70-77. |
[29] | Hu H, Wang Y, Huang Y , et al. Na2FePO4F/C composite synthesized via a simple solid state route for lithium-ion batteries[J]. Journal of Central South University, 2019,26(6):1521-1529. |
[30] | Tsu-Ura A, Torii H, Hasegawa T , et al. Synjournal of Na2FePO4F using polytetrafluoroethylene[J]. Journal of the Ceramic Society of Japan, 2018,126(5):336-340. |
[31] | Wu X B, Gong Z L, Tan S , et al. Sol-gel synjournal of Li2CoPO4F/C nanocomposite as a high power cathode material for lithium ion batteries[J]. Journal of Power Sources, 2012,220:122-129. |
[32] | Kosova N V, Devyatkina E T, Slobodyuk A B . In situ and ex situ X-ray study of formation and decomposition of Li2CoPO4F under heating and cooling.Investigation of its local structure and electrochemical properties[J]. Solid State Ionics, 2012,225:570-574. |
[33] | Deng X, Shi W X, Sunarso J , et al. A green route to a Na2FePO4F-based cathode for sodium ion batteries of high rate and long cycling life[J]. ACS Applied Materials & Interfaces, 2017,9(19):16280-16287. |
[34] | Schoiber J, Berger R J F, Bernardi J , et al. Straightforward solvo-thermal synjournal toward phase pure Li2CoPO4F[J]. Crystal Growth & Design, 2016,16(9):4999-5005. |
[35] | Ling R, Cai S, Shen S , et al. Synjournal of carbon coated Na2FePO4F as cathode materials for high-performance sodium ion batteries[J]. Journal of Alloys and Compounds, 2017,704:631-640. |
[36] | Ling R, Cai S, Xie D L , et al. Double-shelled hollow Na2FePO4F/C spheres cathode for high-performance sodium-ion batteries[J]. Journal of Materials Science, 2018,53(4):2735-2747. |
[37] | Hua S S, Cai S, Ling R , et al. Synjournal of porous sponge-like Na2FePO4F/C as high-rate and long cycle-life cathode material for sodium ion batteries[J]. Inorganic Chemistry Communications, 2018,95:90-94. |
[38] | Goubard-Bretesche N, Kemnitz E, Pinna N . Fluorolytic sol-gel route and electrochemical properties of polyanionic transition-metal phosphate fluorides[J]. Chemistry:A European Journal, 2019,25(24):6189-6195. |
[39] | Sharma L, Nayak P K, de la Llave E , et al. Electrochemical and diffusional investigation of Na2Fe ⅡPO4F fluorophosphate sodium nsertion material obtained from Fe Ⅲ precursor [J]. ACS Applied Materials & Interfaces, 2017,9(40):34961-34969. |
[40] | Langrock A, Xu Y H, Liu Y H , et al. Carbon coated hollow Na2FePO4F spheres for Na-ion battery cathodes[J]. Journal of Power Sources, 2013,223:62-67. |
[41] | Brisbois M, Krins N, Hermann R P , et al. Spray-drying synjournal of Na2FePO4F/carbon powders for lithium-ion batteries[J]. Materials Letters, 2014,130:263-266. |
[42] | Lin X C, Hou X, Wu X B , et al. Exploiting Na2MnPO4F as a high-capacity and well-reversible cathode material for Na-ion batteries[J]. RSC Advance, 2014,4(77):40985-40993. |
[43] | Zou H, Li S D, Wu X B , et al. Spray-drying synjournal of pure Na2CoPO4F as cathode material for sodium ion batteries[J]. ECS Electrochemistry Letters, 2015,4(6):A53-A55. |
[44] | Brisbois M, Caes S, Sougrati M T , et al. Na2FePO4F/multi-walled carbon nanotubes for lithium-ion batteries:Operando M?ssbauer study of spray-dried composites[J]. Solar Energy Materials and Solar Cells, 2016,148:67-72. |
[45] | Mahmoud A, Caes S, Brisbois M , et al. Spray-drying as a tool to disperse conductive carbon inside Na2FePO4F particles by addition of carbon black or carbon nanotubes to the precursor solution[J]. Journal of Solid State Electrochemistry, 2018,22(1):103-112. |
[46] | Wu L, Hu Y, Zhang X P , et al. Synjournal of carbon-coated Na2MnPO4F hollow spheres as a potential cathode material for Na-ion batteries[J]. Journal of Power Sources, 2018,374:40-47. |
[47] | Hu Y, Wu L, Liao G X . Electrospinning synjournal of Na2MnPO4F/C nanofibers as a high voltage cathode material for Na-ion batteries[J]. Ceramics International, 2018,44(15):17577-17584. |
[48] | Wang F F, Zhang N, Zhao X D , et al. Realizing a high-performance Na-storage cathode by tailoring ultrasmall Na2FePO4F nanoparticles with facilitated reaction kinetics[J]. Advanced Science, 2019,6(13):1900649. |
[49] | Ko W, Yoo J K, Park H , et al. Development of Na2FePO4F/conducting-polymer composite as an exceptionally high performance cathode material for Na-ion batteries[J]. Journal of Power Sources, 2019,432:1-7. |
[50] | Yang F M, Sun W W, Li Y H , et al. Li2FePO4F and its metal-doping for Li-ion batteries:an ab initio study[J]. RSC Advances, 2014,4(91):50195-50201. |
[51] | Jin D, Qiu H L, Du F , et al. Co-doped Na2FePO4F fluorophosphates as a promising cathode material for rechargeable sodium-ion batteries[J]. Solid State Science, 2019,93:62-69. |
[52] | Truong Q D, Devaraju M K, Ganbe Y , et al. Structural analysis and electrochemical performance of Li2CoPO4F cathode materials[J]. Electrochimica Acta, 2014,127:245-251. |
[53] | Chen S M, Wen K H, Fan J T , et al. Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries:from liquid to solid electrolytes[J]. Journal of Materials Chemistry A, 2018,6(25):11631-11663. |
[54] | 王志刚, 赵卫民, 王红春 , 等. FEC基电解液对高压正极材料Li2CoPO4F电化学性能的影响[J]. 电化学, 2018,24(3):216-226. |
[55] | Nagahama M, Hasegawa N, Okada S . High voltage performances of Li2NiPO4F cathode with dinitrile-based electrolytes[J]. Journal of The Electrochemical Society, 2010,157(6):A748-A752. |
[56] | Chen L, Fan X L, Hu E Y , et al. Achieving high energy density thr-ough increasing the output voltage:a highly reversible 5.3 V battery[J]. Chem, 2019,5(4):896-912. |
[57] | Guan P Y, Zhou L, Yu Z L , et al. Recent progress of surface coat-ing on cathode materials for high-performance lithium-ion batter-ies[J]. Journal of Energy Chemistry, 2020,43:220-235. |
[58] | Amaresh S, Karthikeyan K, Kim K J , et al. Facile synjournal of ZrO2 coated Li2CoPO4F cathode materials for lithium secondary batteri-es with improved electrochemical properties[J]. Journal of Power Sources, 2013,244:395-402. |
[59] | Amaresh S, Karthikeyan K, Kim K J , et al. Metal oxide coated lithi-um cobalt fluorophosphate cathode materials for lithium secondary batteries-effect of aging and temperature[J]. Journal of Nanoscience and Nanotechnology, 2014,14(10):7545-7552. |
[60] | Amaresh S, Karthikeyan K, Kim K J , et al. Alumina coating on 5 V lithium cobalt fluorophosphate cathode material for lithium secon-dary batteries-synjournal and electrochemical properties[J]. RSC Advances, 2014,4(44):23107-23115. |
[61] | Chang C Y, Huang Z P, Tian R S , et al. Targeted partial surface mo-dification with nano-SiO2@Li2CoPO4F as high-voltage cathode material for LIBs[J]. Journal of Power Sources, 2017,364:351-358. |
[62] | Wu X B, Wang S H, Lin X C , et al. Promoting long-term cycling per-formance of high-voltage Li2CoPO4F by the stabilization of electro-de/electrolyte interface[J]. Journal of Materials Chemistry A, 2014,2(4):1006-1013. |
/
〈 |
|
〉 |