Inorganic Chemicals Industry ›› 2025, Vol. 57 ›› Issue (11): 1-9.doi: 10.19964/j.issn.1006-4990.2025-0040
• Reviews and Special Topics • Next Articles
WU Jie1,2(
), WU Zewen2,3, WANG Feng2(
), ZHANG Qi2,3, TANG Zhongfeng3(
)
Received:2025-01-20
Online:2025-11-10
Published:2025-08-12
Contact:
WANG Feng, TANG Zhongfeng
E-mail:wujiegongda@126.com;wangfeng@imut.com;tangzhongfeng@sinap.ac.cn
CLC Number:
WU Jie, WU Zewen, WANG Feng, ZHANG Qi, TANG Zhongfeng. Research progress on modification and preparation of carbide slag based CO2 adsorbents[J]. Inorganic Chemicals Industry, 2025, 57(11): 1-9.
Table 1
Performance of calcium carbide slag-based CO2 adsorbents doped with Al2O3 precursors"
| 原料 | 最佳配比 | 合成方法 | 碳酸化条件 | 循环性能 |
|---|---|---|---|---|
电石渣、Al(NO3)3、 甘油水溶液[ | m(CaO)∶m(Al2O3)=90∶10 | 燃烧合成法 | 680 ℃,纯CO2,<5 min | 50次循环后最大 吸附容量为0.38 g/g |
电石渣、Al(NO3)3、 柠檬酸[ | m(CaO)∶m(Al2O3)=90∶10 | 有机酸同步铝掺杂法 | 650 ℃,15%(体积分数,下同) CO2/N2,45 min | 30次循环后最大 吸附容量为0.33 g/g |
电石渣、高铝水泥、 生物柴油副产物[ | m(CaO)∶m(Al2O3)=95∶5 | 燃烧合成法 | 700 ℃,15%CO2/N2,20 min | 10次循环后最大 吸附容量为0.62 g/g |
电石渣、高铝水泥、 生物柴油副产物[ | m(CaO)∶m(Al2O3)=90∶10 | 燃烧合成法 | 碳酸化:700 ℃,15%CO2/N2,20 min | 30次循环后最大 吸附容量为0.27 g/g |
电石渣、纳米Al2O3、 琼脂、硅胶模具[ | n(CaO)∶n(Al2O3)=100∶10 | 琼脂-硅模法 | 660 ℃,纯CO2,20 min | 15次循环后最大 吸附容量为0.50 g/g |
Table 2
Performance of carbide slag-based CO2 adsorbents doped with MgO precursors"
| 原料 | 最佳配比 | 合成方法 | 碳酸化条件 | 循环性能 |
|---|---|---|---|---|
电石渣、Mg(NO3)2‧6H2O、 生物柴油燃烧副产物[ | m(CaO)∶m(MgO)=80∶20 | 燃烧合成法 | 700 ℃,15%CO2/40% 水蒸气/N2,20 min | 20次循环后最大 吸附容量为0.42 g/g |
电石渣、Mg(NO3)2‧6H2O、 甘油[ | m(CaO)∶m(MgO)=80∶20 | 燃烧合成法 | 700 ℃,15%CO2/N2,20 min | 10次循环后碳酸化 转化率为0.77 |
| 电石渣、MgCO3[ | n(CaO)∶n(MgO)=70∶30 | 机械混合法 | 750 ℃,33%CO2/N2,30 min | 10次循环后碳酸化 转化率为0.61 |
电石渣、Mg(NO3)2‧6H2O、 柠檬酸[ | n(CaO)∶n(MgO)=70∶30 | 溶胶-凝胶法、燃烧合成法 | 750 ℃,33%CO2/N2,30 min | 10次循环后碳酸化 转化率为0.89 |
| 电石渣、白云石[ | m(CaO)∶m(MgO)=90∶10 | 燃烧合成法 | 700 ℃,15%CO2/N2,20 min | 20次循环后最大 吸附容量为0.52 g/g |
Table 3
Comparison of performance of carbide slag-based CO2 adsorbents doped with polymetallic oxides"
| 原料 | 最佳配比 | 合成方法 | 碳酸化条件 | 循环性能 |
|---|---|---|---|---|
| 电石渣、白云石、Mn(NO3)2‧4H2O、生物柴油燃烧副产物[ | n(CaO)∶n(MgO)∶n(MnO2)=89∶10∶1 | 燃烧合成法 | 700 ℃,15%CO2/20% 水蒸气/N2,20 min | 10次循环后最大 吸附容量为0.52 g/g |
电石渣、MgO、NiO、 柠檬酸[ | m(CaO)∶m(MgO)∶m(NiO)=75∶15∶10 | 液相沉淀法 | 650 ℃,30%CO2/N2, 25 min | 20次循环后最大 吸附容量为0.25 g/g |
电石渣、MgO、ZrO2、 柠檬酸[ | m(CaO)∶m(MgO)∶m(ZrO2)=75∶15∶10 | 液相沉淀法 | 650 ℃,30%CO2/N2, 25 min | 20次循环后最大 吸附容量为0.24 g/g |
| 电石渣、MgO、ZnO[ | m(CaO)∶m(MgO)∶m(ZnO)=85∶10∶5 | 物理混合法 | 650 ℃,纯CO2, 40 min | 20次循环后最大 吸附容量为0.42 g/g |
电石渣、MnC4H6O4·4H2O、 Ce(NO3)3·6H2O、柠檬酸[ | m(Ca)∶m(Mn)∶m(Ce)=100∶5∶2.5 | 湿混合法 | 850 ℃,纯CO2, 10 min | 30次循环后最大 吸附容量为0.52 g/g |
Table 4
CO2 adsorption performance of carbide slag-based adsorbents modified by different template methods"
| 原料 | 合成方法 | 碳酸化条件 | 循环性能 |
|---|---|---|---|
电石渣、氧化铝 水泥、葡萄糖[ | 碳微球 模板法 | 700 ℃,15%CO2/ N2,20 min | 20次循环后最大吸附容量为0.37 g/g |
电石渣、纸纤维、 Al(NO3)3·9H2O[ | 纸模板法 | 700 ℃,15%CO2/ N2,30 min | 30次循环后最大吸附容量为0.56 g/g |
玉米芯粉、 电石渣[ | 琼脂法 | 650 ℃,CO2, 20 min | 15次循环后最大吸附容量为0.336 g/g |
电石渣、 Al2O3[ | 水热 模板法 | 700 ℃,10%H2O/ 15%CO2/N2,20 min | 30次循环后最大吸附容量为0.29 g/g |
电石渣、生物 柴油副产物[ | 燃烧 合成法 | 700 ℃,15%CO2/ N2,20 min | 20次循环后碳酸化转化率为0.58 |
Table 5
Comparison of CO2 adsorption performance of different acid-modified calcium carbide slag-based adsorbents"
| 原料 | 最佳配比 | CO2吸附条件 | 循环性能及固碳性能 |
|---|---|---|---|
| 电石渣、丙酸[ | n(电石渣)∶n(丙酸)=1∶4 | 700 ℃,15%CO2/N2,20 min | 20次循环后碳酸转化率为0.51 |
| 电石渣、乙酸[ | n(Ca2+)∶n(H+)=1∶3 | 650 ℃,15%CO2/N2,30 min | 15次循环后最大吸附容量为0.25 g/g |
| 电石渣、柠檬酸[ | n(Ca2+)∶n(H+)=1∶3 | 650 ℃,15%CO2/N2,30 min | 15次循环后最大吸附容量为0.20 g/g |
| 电石渣、草酸[ | n(Ca2+)∶n(H+)=1∶3 | 650 ℃,15%CO2/N2,30 min | 15次循环后最大吸附容量为0.20 g/g |
| 电石渣、甲酸[ | n(Ca2+)∶n(H+)=1∶3 | 650 ℃,15%CO2/N2,30 min | 15次循环后最大吸附容量为0.13 g/g |
电石渣、钢渣、乙酸 (0.5 mol/L)[ | m[固体(电石渣20%)]∶m(液体)=1∶10 | 最大固碳量为0.264 g/g | |
电石渣、钢渣、盐酸 (0.5 mol/L)[ | m[固体(电石渣20%)]∶m(液体)=1∶10 | 最大固碳量为0.169 g/g | |
电石渣、钢渣、乳酸 (0.5 mol/L)[ | m[固体(电石渣20%)]∶m(液体)=1∶10 | 最大固碳量为0.251 g/g | |
| 电石渣、柠檬酸[ | n(电石渣)∶n(柠檬酸)=1∶1 | 650 ℃,15%CO2/N2,45 min | 10次循环后最大吸附容量为0.32 g/g |
Table 6
Comparison of CO2 adsorption performance of hydrate-modified calcium carbide slag-based adsorbents"
| 原料 | CO2吸附条件 | 水合与脱水条件 | 循环性能及固碳性能 |
|---|---|---|---|
| 电石渣[ | 650 ℃,20%H2O/15%CO2/N2,20 min | 20次循环后碳酸化转化率为0.37 | |
| 电石渣[ | 650 ℃,40%H2O/20%CO2/N2,5 min (第1次和第10次循环20 min) | 20次循环后碳酸化转化率为0.35 | |
| 电石渣[ | 650 ℃,60%H2O/20%CO2/N2,5 min | 20次循环后碳酸化转化率为0.31 | |
| 电石渣、菱镁矿[ | 650 ℃,20%H2O/12%CO2/15%O2/N2,5 min | 20次循环后碳酸化转化率为0.231 | |
电石渣、 生物柴油副产物[ | 700 ℃,15%CO2,85%N2,20 min | 水合:400 ℃,95%H2O/空气, 5 min;脱水:550 ℃,空气,10 min | 20次循环后碳酸化转化率为0.81 |
| 电石渣[ | 5 ℃,CO2初始压力1.5 MPa,液固体积质量比(mL/g)为15 | 初次循环后碳酸化转化率为0.620 4 | |
| [1] | 赵雯涵,吴水木,李英杰.钙基工业固废循环捕集CO2性能研究进展[J].煤炭学报,2022,47(11):3926-3935. |
| ZHAO Wenhan, WU Shuimu, LI Yingjie.A review on cyclic CO2 capture performance of calcium-based industrial solid waste[J].Journal of China Coal Society,2022,47(11):3926-3935. | |
| [2] | 张媛,高彩云,李东,等.电石渣改性制备高效CO2复合吸收剂[J].人工晶体学报,2024,53(2):344-354. |
| ZHANG Yuan, GAO Caiyun, LI Dong,et al.High efficiency CO2 composite absorbent prepared by modification of carbide slag[J].Journal of Synthetic Crystals,2024,53(2):344-354. | |
| [3] | HU Yingchao, LIU Wenqiang, CHEN Hongqiang,et al.Screening of inert solid supports for CaO-based sorbents for high temperature CO2 capture[J].Fuel,2016,181:199-206. |
| [4] | AFANDI N, SATGUNAM M, MAHALINGAM S,et al.Review on the modifications of natural and industrial waste CaO based sorbent of calcium looping with enhanced CO2 capture capacity[J].Heliyon,2024,10(5):e27119. |
| [5] | LI Yingjie, SU Mengying, XIE Xin,et al.CO2 capture performance of synthetic sorbent prepared from carbide slag and aluminum nitrate hydrate by combustion synthesis[J].Applied Energy,2015,145:60-68. |
| [6] | 赵美鑫,耿一琪,刘世军,等.电石渣掺杂改性制备高稳定CO2吸附剂及其性能研究[J].山西大学学报(自然科学版),2025,48(4):806-814. |
| ZHAO Meixin, GENG Yiqi, LIU Shijun,et al.Preparation of high-stability CO2 adsorbents by doping modification of calcium carbide slag and its properties[J].Journal of Shanxi University(Natural Science Edition),2025,48(4):806-814. | |
| [7] | MA Xiaotong, LI Yingjie, CHI Changyun,et al.CO2 capture performance of cement-modified carbide slag[J].Korean Journal of Chemical Engineering,2017,34(2):580-587. |
| [8] | MA Xiaotong, LI Yingjie, CHI Changyun,et al.CO2 capture performance of mesoporous synthetic sorbent fabricated using carbide slag under realistic calcium looping conditions[J].Energy & Fuels,2017,31(7):7299-7308. |
| [9] | CHEN Weilong, TANG Yuting, LIU Hongyu,et al.Preparation of nano-Al2O3 support CaO-based sorbent pellets by novel methods for high-temperature CO2 capture[J].Journal of Environmental Chemical Engineering,2024,12(6):114157. |
| [10] | VALVERDE J M, SANCHEZ-JIMENEZ P E, PEREZ-MAQUEDA L A.Ca-looping for postcombustion CO2 capture:A comparative analysis on the performances of dolomite and limestone[J].Applied Energy,2015,138:202-215. |
| [11] | 祁星朝,王峰,武洁,等.电石渣/碳酸镁体系的热分解行为与机制研究[J].无机盐工业,2024,56(10):118-126. |
| QI Xingzhao, WANG Feng, WU Jie,et al.Study on pyrolysis behavior and mechanism of calcium carbide slag/magnesium carbonate system[J].Inorganic Chemicals Industry,2024,56(10):118-126. | |
| [12] | MA Xiaotong, LI Yingjie, SHI Lei,et al.Fabrication and CO2 capture performance of magnesia-stabilized carbide slag by-product of biodiesel during calcium looping process[J].Applied Energy,2016,168:85-95. |
| [13] | BIAN Zhiguo, LI Yingjie, WU Shuimu,et al.SO2 removal performances of Al- and Mg-modified carbide slags from CO2 capture cycles at calcium looping conditions[J].Journal of Thermal Analysis and Calorimetry,2021,144(4):1187-1197. |
| [14] | 祁星朝.基于电石渣资源化利用的钙基CO2吸附剂性能优化[D].呼和浩特:内蒙古工业大学,2024. |
| QI Xingzhao.Performance optimization of calcium-based CO2 adsorbents based on the resource utilization of calcium carbide slag[D].Hohhot:Inner Mongolia University of Technology,2024. | |
| [15] | YAN Xianyao, LI Yingjie, MA Xiaotong,et al.CO2 capture by a novel CaO/MgO sorbent fabricated from industrial waste and dolomite under calcium looping conditions[J].New Journal of Che- mistry,2019,43(13):5116-5125. |
| [16] | HLAING N N, SREEKANTAN S, OTHMAN R,et al.A novel(Zr-Ce) incorporated Ca(OH)2 nanostructure as a durable adsorbent for CO2 capture[J].Materials Letters,2014,133:204-207. |
| [17] | WANG Shengping, FAN Shasha, FAN Lijing,et al.Effect of cerium oxide doping on the performance of CaO-based sorbents during calcium looping cycles[J].Environmental Science & Technology,2015,49(8):5021-5027. |
| [18] | MA Xiaotong, LI Yingjie, ZHANG Chunxiao,et al.Development of Mn/Mg-copromoted carbide slag for efficient CO2 capture under realistic calcium looping conditions[J].Process Safety and Environmental Protection,2020,141:380-389. |
| [19] | GAO Caiyun, ZHANG Yuan, LI Dong,et al.Highly cyclic stability and absorbent activity of carbide slag doped with MgO and ZnO for thermochemical energy storage[J].ACS Omega,2022,7(49):45443-45454. |
| [20] | SUN Jian, GUO Yafei, YANG Yuandong,et al.Mode investigation of CO2 sorption enhancement for titanium dioxide-decorated CaO-based pellets[J].Fuel,2019,256:116009. |
| [21] | QIN Kun, WANG T, HUANG J C,et al.Effect of distribution patterns of refractory overlayers on cyclic high temperature CO2 capture using waste oyster shell[J].RSC Advances,2016,6(100):97739-97748. |
| [22] | WANG Guodong, GUO Yafei, YU Jun,et al.Ni-CaO dual function materials prepared by different synthetic modes for integrated CO2 capture and conversion[J].Chemical Engineering Journal,2022,428:132110. |
| [23] | LI Xiaoyu, ZHAO Keping, HE Xi,et al.Evaluation of calcium looping CO2 capture and thermochemical energy storage performances of different stabilizers promoted CaO-based composites derived from solid wastes[J].Powder Technology,2024,448:120343. |
| [24] | CAI Jianjun, YAN Feng, LUO Ming,et al.Highly stable CO2 capture performance of binary doped carbide slag synthesized through liquid precipitation method[J].Fuel,2020,280:118575. |
| [25] | FANG Yi, LI Yingjie, ZHANG Youhao,et al.Self-acceleration effect of Mn/Ce-modified carbide slag in CO2 absorption for CaO/CaCO3 energy storage[J].Separation and Purification Technology,2025,357:130153. |
| [26] | MA Xiaotong, LI Yingjie, DUAN Lunbo,et al.CO2 capture performance of calcium-based synthetic sorbent with hollow core-shell structure under calcium looping conditions[J].Applied Energy,2018,225:402-412. |
| [27] | MA Xiaotong, LI Yingjie, YAN Xianyao,et al.Preparation of a morph-genetic CaO-based sorbent using paper fibre as a biotemplate for enhanced CO2 capture[J].Chemical Engineering Journal,2019,361:235-244. |
| [28] | CHEN Weilong, TANG Yuting, TANG Jiehong,et al.Preparation of corncob-templated carbide slag sorbent pellets by agar method for CO2 capture:One-step synthesis and cyclic performance[J].Separation and Purification Technology,2025,353:128550. |
| [29] | MA Xiaotong, LI Yingjie, QIAN Yi,et al.A carbide slag-based,Ca12Al14O33-stabilized sorbent prepared by the hydrothermal template method enabling efficient CO2 capture[J].Energies,2019,12(13):2617. |
| [30] | ZHANG Chunxiao, LI Yingjie, BIAN Zhiguo,et al.Simultaneous CO2 capture and thermochemical heat storage by modified carbide slag in coupled calcium looping and CaO/Ca(OH)2 cycles[J].Chinese Journal of Chemical Engineering,2021,36:76-85. |
| [31] | ERANS M, MANOVIC V, ANTHONY E J.Calcium looping sorbents for CO2 capture[J].Applied Energy,2016,180:722-742. |
| [32] | 孙荣岳,叶江明,毕小龙,等.丙酸改性提高电石渣捕集CO2性能的动力学分析[J].化工进展,2017,36(6):2325-2330. |
| SUN Rongyue, YE Jiangming, BI Xiaolong,et al.Kinetic analysis on CO2 capture performance of carbide slag modified by propionic acid[J].Chemical Industry and Engineering Progress,2017,36(6):2325-2330. | |
| [33] | 宋浩,卢奕江,谌缘,等.有机酸改性对电石渣碳酸化及循环特性的影响研究[J].燃料化学学报(中英文),2025,53(4):481-492. |
| SONG Hao, LU Yijiang, CHEN Yuan,et al.Study on the effect of organic acid modification on carbonation and cycle performance of carbide slag[J].Journal of Fuel Chemistry and Technology,2025,53(4):481-492. | |
| [34] | WANG Xinyu, ZHAN Qiwei, ZHANG Xuan,et al.Carbon fixation performance and mechanism of composite modification of steel slag using acids coordinated with calcium carbide residue[J].Construction and Building Materials,2024,451:138758. |
| [35] | SUN Rongyue, ZHU Hongliang, XIAO Rui.Enhancement of CO2 capture and microstructure evolution of the spent calcium-based sorbent by the self-reactivation process[J]. Chinese Journal of Chemical Engineering,2021,34(1):160-166. |
| [36] | 孙荣岳,胡天骄,尹鹏祥,等.失活石灰石自活化增强循环捕集CO2特性[J].洁净煤技术,2024,30(2):340-346. |
| SUN Rongyue, HU Tianjiao, YIN Pengxiang,et al.Self-reactivation of spent limestone to enhance its CO2 capture capacity in multiple cycles[J].Clean Coal Technology,2024,30(2):340-346. | |
| [37] | HE Zirui, LI Yingjie, MA Xiaotong,et al.Influence of steam in carbonation stage on CO2 capture by Ca-based industrial waste during calcium looping cycles[J].International Journal of Hydrogen Energy,2016,41(7):4296-4304. |
| [38] | ZHANG Wan, LI Yingjie, HE Zirui,et al.CO2 capture by carbide slag calcined under high-concentration steam and energy requirement in calcium looping conditions[J].Applied Energy,2017,206:869-878. |
| [39] | PAPALAS T, ANTZARAS A N, LEMONIDOU A A.Evaluation of calcium-based sorbents derived from natural ores and industrial wastes for high-temperature CO2 capture[J].Industrial & Engineering Chemistry Research,2020,59(21):9926-9938. |
| [40] | WANG Zhiqiang, CUI Longpeng, LIU Yanfang,et al.High-efficiency CO2 zisequestration through direct aqueous carbonation of carbide slag:Determination of carbonation reaction and optimization of operation parameters[J].Frontiers of Environmental Science & Engineering,2024,18(1):156-167. |
| [41] | VASIJIJE M, DENNIS L, EDWARD J A.Steam hydration of sorbents from a dual fluidized bed CO2 looping cycle reactor[J].Fuel,2008,87(15/16):3344-3352. |
| [42] | GONZÁLEZ B, BLAMEY J, AL-JEBOORI M J,et al.Additive effects of steam addition and HBr doping for CaO-based sorbents for CO2 capture[J].Chemical Engineering and Processing:Process Intensification,2016,103:21-26. |
| [43] | YUAN Yi, LI Yingjie, DUAN Lunbo,et al.CaO/Ca(OH)2 thermochemical heat storage of carbide slag from calcium looping cycles for CO2 capture[J].Energy Conversion and Management,2018,174:8-19. |
| [1] | ZHANG Longhua, ZHANG Zhichao. Study on synergistic modification to improve structural stability of ternary cathode material LiNi0.9Co0.05Mn0.05O2 [J]. Inorganic Chemicals Industry, 2025, 57(9): 82-87. |
| [2] | CHEN Mengmeng, XU Dekan, HUANG Jilong, TANG Zhilan, ZHANG Xu, TAN Chao, WANG Xiaohu, PENG Wenbo. Study on preparation and performance of Ni-modified titanium-based lithium ion sieve [J]. Inorganic Chemicals Industry, 2025, 57(9): 37-45. |
| [3] | LI Shuli, CHEN Shipeng, ZHANG Lingli, SHI Fanian. Defects,modification strategies and prospects of graphite anode materials for low temperature lithium-ion batteries [J]. Inorganic Chemicals Industry, 2025, 57(9): 21-29. |
| [4] | SHEN Mengmeng. Study on preparation of g-C3N4/polyaniline composites and their application in photocatalytic reduction of CO2 [J]. Inorganic Chemicals Industry, 2025, 57(8): 123-130. |
| [5] | XIONG Xiaoyun, MU Linbo, DU Xuemin, HU Qingxun. Study on boron and phosphorus modified of alumina oxide and its application in catalytic cracking [J]. Inorganic Chemicals Industry, 2025, 57(8): 117-122. |
| [6] | HAN Xing, SHI Dandan, WANG Xingquan, ZHANG Tianying, CAO Yue, WANG Yiying, ZHU Xiang, XU Naicai. Study on Mg-Al hydrotalcite modified by sodium dodecyl sulfate and its adsorption performance for Pb2+ [J]. Inorganic Chemicals Industry, 2025, 57(8): 48-57. |
| [7] | WANG Xiaoyu, DU Ruicheng, LI Yan, YANG Shuyan. Research advances in optimization and modification of TiO2-based nanomaterials [J]. Inorganic Chemicals Industry, 2025, 57(7): 24-34. |
| [8] | DANG Jianmeng, ZHANG Zhichao, CAO Zhongkai, LI Zixuan, SHEN Jixue. Research on improving electrochemical performance of Ni-rich cathode materials under fast-charging operation [J]. Inorganic Chemicals Industry, 2025, 57(7): 14-23. |
| [9] | WANG Danqin, LIAN Yicheng, DU Xin, YAN Feifei, LIU Wanchao, REN Wurong. Research progress on treatment technology for fluorine-containing solid wastes of electrolytic aluminum [J]. Inorganic Chemicals Industry, 2025, 57(6): 9-17. |
| [10] | PANG Hao, LI Bin, SUN Zhenhai, GUO Jian, CAI Zhe, WU Luming, HONG Meihua, YANG Zhanfeng. Study on adsorption and denitrification performance of iron doped modified SiO2 [J]. Inorganic Chemicals Industry, 2025, 57(6): 49-55. |
| [11] | CHEN Tongtong, HAN Xianying, JIE Mengling, LI Jiangang. Synergistically enhanced properties of Na4Fe3(PO4)2P2O7/C material by Mo-Mn dual doping and carbon nanotube composite [J]. Inorganic Chemicals Industry, 2025, 57(5): 79-86. |
| [12] | TANG Zhenqiang, CAI Zongying, CAO Weigang, ZHENG Long. Research progress on synthesis and modification of olivine type lithium iron phosphate cathode materials [J]. Inorganic Chemicals Industry, 2025, 57(5): 55-63. |
| [13] | ZHANG Peipei, WANG Wenbo, MI Xiaotong, XIN Jing, LI Yongheng, LI Sixuan, XIA Lin. Study on synthesis of ZnO/ZrO2 catalyst and its application in CO2 hydrogenation to methanol [J]. Inorganic Chemicals Industry, 2025, 57(5): 125-132. |
| [14] | QIAO Zixuan, ZHANG Runfeng, LIU Tong, FU Xinyu, YANG Hongjian. Effect of kaolin content on properties of magnesium oxy sulfate cement [J]. Inorganic Chemicals Industry, 2025, 57(5): 32-38. |
| [15] | WANG Zhiyu, SONG Kun, SHEN Miao, SHEN Ping, XIAO Peiyao, YANG Chunming. Research progress of supercapacitors based on surface modified graphite felt composite materials [J]. Inorganic Chemicals Industry, 2025, 57(4): 11-21. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
||
Copyright © 2021 Editorial Office of Inorganic Chemicals Industry
Add:No.3 Road Dingzigu,Hongqiao District,Tianjin,China
E-mail:book@wjygy.com.cn 违法和不良信息举报电话: 022-26689297