Inorganic Chemicals Industry ›› 2022, Vol. 54 ›› Issue (1): 12-17.doi: 10.19964/j.issn.1006-4990.2021-0159
• Reviews and Special Topics • Previous Articles Next Articles
WANG Xiaohuan(),LI Shenghao,SHI Zhiming,WANG Jun,XINBA Yaer,LIU Liang
Received:
2021-03-17
Online:
2022-01-10
Published:
2022-03-14
CLC Number:
WANG Xiaohuan,LI Shenghao,SHI Zhiming,WANG Jun,XINBA Yaer,LIU Liang. Research status of FeTiO3 materials[J]. Inorganic Chemicals Industry, 2022, 54(1): 12-17.
[1] |
TANG X, HU K. The formation of ilmenite FeTiO3 powders by a novel liquid mix and H2/H2O reduction process[J]. Journal of Materials Science, 2006, 41(23):8025-8028.
doi: 10.1007/s10853-006-0908-8 |
[2] |
YE F X, OHMORI A, LI C J, et al. New approach to enhance the pho-tocatalytic activity of plasma sprayed TiO2 coatings using p-n junctions[J]. Surface and Coatings Technology, 2004, 184:233-238.
doi: 10.1016/j.surfcoat.2003.11.012 |
[3] |
YE F X, OHMORI A. The photocatalytic activity and photo-absorp-tion of plasma sprayed TiO2-Fe3O4 binary oxide coatings[J]. Surface and Coatings Technology, 2002, 160:62-67.
doi: 10.1016/S0257-8972(02)00377-8 |
[4] | NAYLOR B F. High-temperature heat contents of the metatitanates of calcium,iron and magnesium[J]. Journal of the American Chemi-cal Society, 1946, 68:1003-1006. |
[5] | STICKLER J J. Magnetic resonance and susceptibility of several il-menite powders[J]. Physical Review B, 1967, 162:765-767. |
[6] | SHOMATE C H. Heat capacities at low temperatures of the metati-tanates of iron,calcium and Magnesium1[J]. Journal of the Ameri-can Chemical Society, 1946, 68(6):964-966. |
[7] |
MØRUP S, RASMUSSEN H K, BROK E, et al. Influence of cationdi-sorder on the magnetic properties of ball-milled ilmenite(FeTiO3)[J]. Materials Chemistry and Physics, 2012, 136(1):184-189.
doi: 10.1016/j.matchemphys.2012.06.050 |
[8] |
CHEN Y. Low-temperature oxidation of ilmenite(FeTiO3) induced by high energy ball milling at room temperature[J]. Journal of Alloys and Compounds, 1997, 257:156-160.
doi: 10.1016/S0925-8388(97)00012-1 |
[9] |
ABSALAN Y, BRATCHIKOVA I G, LOBANOV N N, et al. Novel synjournal method for photo-catalytic system based on some 3d-metal titanates[J]. Journal of Materials Science:Materials in Electronics, 2017, 28(23):18207-18219.
doi: 10.1007/s10854-017-7769-6 |
[10] |
XIAO W, LU X G, ZOU X L, et al. Phase transitions,micro-morpho-logy and its oxidation mechanism in oxidation of ilmenite(FeTiO3) powder[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(8):2439-2445.
doi: 10.1016/S1003-6326(13)62752-1 |
[11] | 李晴宇, 杜继红, 奚正平, 等. 钛铁矿烧结性能研究[J]. 稀有金属材料与工程, 2010, 39(z1):239-243. |
[12] |
HAN T R, CHEN Y J, TIAN G H, et al. Hierarchical FeTiO3-TiO2 hollow spheres for efficient simulated sunlight-driven water oxida-tion[J]. Nanoscale, 2015, 7:15924-15934.
doi: 10.1039/C5NR05242D |
[13] |
GUAN X F, ZHENG J, ZHAO M L, et al. Synjournal of FeTiO3 nano-sheets with {0001} facets exposed:Enhanced electrochemical per-formance and catalytic activity[J]. RSC Advances, 2013, 3(33) :13635-13641.
doi: 10.1039/c3ra22125c |
[14] | TAO T, GLUSHENKOV A M, LIU H W, et al. Ilmenite FeTiO3 nanoflowers and their pseudocapacitance[J]. The Journal of Physi-cal Chemistry C, 2011, 115:17297-17302. |
[15] |
ZHANG X, LI T, GONG Z, et al. Shape controlled FeTiO3 nanostruc-tures:Crystal facet and photocatalytic property[J]. Journal of Alloys and Compounds, 2015, 653:619-623.
doi: 10.1016/j.jallcom.2015.09.029 |
[16] |
WANG J, XUE C, YAO W Q, et al. MOF-derived hollow TiO2@C/FeTiO3 nanoparticles as photoanodes with enhanced full spectrum light PEC activities[J]. Applied Catalysis B:Environmental, 2019, 250:369-381.
doi: 10.1016/j.apcatb.2019.03.002 |
[17] |
GU D G, QIN Y Y, WEN Y C, et al. Photochemical and magnetic activities of FeTiO3 nanoparticles by electro-spinning synjournal[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 78:431-437.
doi: 10.1016/j.jtice.2017.04.003 |
[18] |
SIVAKUMAR S, SELVARAJ A, RAMASAMY A K, et al. Enhanc-ed photocatalytic degradation of reactive dyes over FeTiO3/TiO2 heterojunction in the presence of H2O2[J]. Water,Air,and Soil Po-llution, 2013, 224(5).Doi: 10.1007/s11270-013-1529-x.
doi: 10.1007/s11270-013-1529-x |
[19] |
YU L T, LIU J, XU X J, et al. Ilmenite nanotubes for high stability and high rate sodium-ion battery anodes[J]. ACS Nano, 2017, 11(5):5120-5129.
doi: 10.1021/acsnano.7b02136 |
[20] |
ZARAZUA-MORÍN M E, TORRES-MARTÍNEZ L M, MOCTEZUMA E, et al. Synjournal,characterization,and catalytic activity of FeTiO3/TiO2 for photodegradation of organic pollutants with visible light[J]. Research on Chemical Intermediates, 2016, 42(2):1029-1043.
doi: 10.1007/s11164-015-2071-9 |
[21] |
SRINIVAS P, KUMAR A S, BABU P D, et al. Synjournal and mag-netic properties of nanocrystalline FeTiO3 materials[J]. Journal of Superconductivity and Novel Magnetism, 2018, 31(4):1189-1197.
doi: 10.1007/s10948-017-4278-z |
[22] | 丁士文, 李梅, 王利勇, 等. 微波反应制备纳米TiO2-Fe2O3复合材料及其光催化性能[J]. 河北大学学报:自然科学版, 2005, 25(1):38-42. |
[23] |
ZHOU F, KOTRU S, PANDEY R K, et al. Pulsed laser-deposited ilmenite-hematite films for application in high-temperature elec-tronics[J]. Thin Solid Films, 1999, 339:114-116.
doi: 10.1016/S0040-6090(98)01161-4 |
[24] |
MONA J, KALE S N, GAIKWAD A B, et al. Chemical methods to synthesize FeTiO3 powders[J]. Materials Letters, 2006, 60(11):1425-1427.
doi: 10.1016/j.matlet.2005.11.041 |
[25] |
SIVA P, PRABU P, SELVAM M, et al. Electrocatalytic conversion of carbon dioxide to urea on nano-FeTiO3 surface[J]. Ionics, 2017, 23(7):1871-1878.
doi: 10.1007/s11581-017-1985-1 |
[26] |
YU Y, ZHAO Y J, LI K, et al. Microstructures and optical proper-ties of TiO2/ZrO2 nanotube/nanoporous heterofilm prepared by an-odizing of Ti/Zr/Ti multilayer films[J]. Applied Surface Science, 2020, 503.Doi: 10.1016/j.apsusc.2019.144316.
doi: 10.1016/j.apsusc.2019.144316 |
[27] |
YU S H, LU Y Y, GAO F, et al. Study on the crystal plane effect of CuO/TiO2 catalysts in NH3-SCR reaction[J]. Catalysis Today, 2020, 339:265-273.
doi: 10.1016/j.cattod.2019.04.051 |
[28] |
LIN M J, JING G H, SHEN H Z, et al. Mechanism of enhancement of photooxidation of Hg0 by CeO2-TiO2:Effect of band structure on the formation of free radicals[J]. Chemical Engineering Journal, 2020, 382.Doi: 10.1016/j.cej.2019.122827.
doi: 10.1016/j.cej.2019.122827 |
[29] |
YU H L, WU Q X, WANG J, et al. Simple fabrication of the Ag-Ag2O-TiO2 photocatalyst thin films on polyester fabrics by magne-tron sputtering and its photocatalytic activity[J]. Applied Surface Science, 2020, 503.Doi: 10.1016/j.apsusc.2019.144075.
doi: 10.1016/j.apsusc.2019.144075 |
[30] |
MANUEL L, GATICA J M, VIDAL H. Use of Au/N-TiO2/SiO2 pho-tocatalysts in building materials with NO depolluting activity[J]. Journal of Cleaner Production, 2020, 243.Doi: 10.1016/j.jclepro.2019.118633.
doi: 10.1016/j.jclepro.2019.118633 |
[31] | GAO B F, KIM Y J, CHAKRABORTY A K, et al. Efficient decom-position of organic compounds with FeTiO3/TiO2 heterojunction under visible light irradiation[J]. Applied Catalysis B:Environ-mental, 2008, 83:202-207. |
[32] | ABBASI A. Grafting of silver particles on FeTiO3/TiO2/Ag:Synjournal and characterization of FeTiO3/TiO2 nanoparticles in presence of CTAB and their application as photocatalyst[J]. Journal of Mate-rials Science:Materials in Electronics, 2018, 29(12):10583-10592. |
[33] | DADIGALA R, GANGAPURAM B R, BANDI R, et al. Synjournal and characterization of C-TiO2/FeTiO3 and CQD/C-TiO2/FeTiO3 photocatalysts with enhanced photocatalytic activities under sun-light irradiation[J]. Acta Metallurgica Sinica(English Letters), 2016, 29(1):17-27. |
[34] |
ZHANG S T, RUAN Y R, LIU C, et al. The evolution of structure,chemical state and photocatalytic performance of α-Fe/FeTiO3/TiO2 with the nitridation at different temperatures[J]. Materials Research Bulletin, 2017, 95:503-508.
doi: 10.1016/j.materresbull.2017.08.042 |
[35] |
LI J Q, JING M X, HAN C, et al. A 3D heterogeneous FeTiO3/TiO2@C fiber membrane as a self-standing anode for power Li-ion battery[J]. Applied Physics A, 2018, 124(4):332-340.
doi: 10.1007/s00339-018-1750-y |
[36] | FUJII T, KAYARO M, TAKADA Y, et al. Preparation and charac-terization of epitaxial FeTiO3+δ films[J]. Journal of Magnetism and Magnetic Materials, 2004, 272:2010-2011. |
[37] | FUJII T, YAMASHITA M, FUJIMORI S, et al. Large magnetic po-larization of Ti4+ ions in FeTiO3[J]. Journal of Magnetism and Ma-gnetic Materials, 2007, 310:555-557. |
[38] |
HOJO H, FUJITA K, TANAKA K, et al. Fabrication of p-type fer-rimagnetic semiconductor thin films based on FeTiO3-Fe2O3 solid solution[J]. Journal of Magnetism and Magnetic Materials, 2007, 310:2105-2107.
doi: 10.1016/j.jmmm.2006.10.782 |
[39] |
PAN L H, SHI W, SEN T P, et al. Visible light-driven selective or-ganic degradation by FeTiO3/persulfate system:the formation and effect of high valent Fe(Ⅳ)[J]. Applied Catalysis B:Environme-ntal, 2021, 280.Doi: 10.1016/j.apcatb.2020.119414.
doi: 10.1016/j.apcatb.2020.119414 |
[40] |
MORADI M, VASSEGHIAN Y, KHATAEE A, et al. Ultrasound-assisted synjournal of FeTiO3/GO nanocomposite for photocatalytic degradation of phenol under visible light irradiation[J]. Separation and Purification Technology, 2021, 261.Doi: 10.1016/j.seppur.2020.118274.
doi: 10.1016/j.seppur.2020.118274 |
[41] |
GUO S M, LIU J R, QIU S, et al. Enhancing electrochemical performances of TiO2 porous microspheres through hybridizing with FeTiO3 and nanocarbon[J]. Electrochimica Acta, 2016, 190:556-565.
doi: 10.1016/j.electacta.2015.12.135 |
[42] | BRUGNETTI G, FIORE M, LORENZI R, et al. FeTiO3 as anode material for sodium-ion batteries:From morphology control to de-composition[J]. ChemElectroChem, 2020(7):1713-1722. |
[43] |
GUO S M, WANG Y, CHEN L J, et al. Porous TiO2-FeTiO3@carbon nanocomposites as anode for high-performance lithium-ion batter-ies[J]. Journal of Alloys and Compounds, 2021, 858.Doi: 10.1016/j.jallcom.2020.157635.
doi: 10.1016/j.jallcom.2020.157635 |
[1] | ZHANG Feigang, LIU Zhongli. Study on application of CuO/g-C3N4 composites in organic dye degradation and supercapacitors [J]. Inorganic Chemicals Industry, 2025, 57(1): 129-136. |
[2] | SHI Mengke, FAN Zhaoya, YUE Feng, ZHANG Shuo, MENG Yang, ZHANG Hongzhong. Study on electro-assisted photocatalytic high selective conversion of CO2 in air [J]. Inorganic Chemicals Industry, 2024, 56(9): 154-163. |
[3] | ZHAO Tianting, ZHU Delun, YANG Lin, ZHOU Xinlei. Preparation and process optimization of porous silicon anode materials for lithium-ion battery [J]. Inorganic Chemicals Industry, 2024, 56(5): 31-38. |
[4] | ZHOU Haitao, WEN Chengqin, ZHENG Ling, SUN Jie. Research on boron nitride modified film for cathode interface of metallic lithium battery [J]. Inorganic Chemicals Industry, 2024, 56(4): 85-89. |
[5] | LI Kuai, LI Zhaoshuai, DONG Tingxuan, LI Dan, GUO Shengwei, HAN Fenglan. Study on effect of wet magnetic separation on distribution of Fe and heavy metal in fly ash [J]. Inorganic Chemicals Industry, 2024, 56(4): 98-104. |
[6] | LIU Yichang, XIE Zhipeng, LIU Yunfeng, ZHANG Da, LIANG Feng. Study on impedance matching strategy of enhancing microwave absorption performance of nitrogen-doped single-walled carbon nanohorns [J]. Inorganic Chemicals Industry, 2024, 56(12): 29-34. |
[7] | FENG Zhun. Improvement of high temperature stability of high nickel single crystal cathode materials by B/Al/Zr synergistic strategy [J]. Inorganic Chemicals Industry, 2023, 55(8): 59-64. |
[8] | FU Minglian, CEN Jianmei, CHEN Zhangxu. Study on preparation of magnetic SiO2/chitosan composite aerogel and its adsorption for Cu2+ [J]. Inorganic Chemicals Industry, 2023, 55(6): 70-77. |
[9] | LI Hongyuan,HARI Bala. Research progress of preparation and photocatalytic application of metal halide perovskite quantum dots [J]. Inorganic Chemicals Industry, 2023, 55(2): 36-44. |
[10] | TIAN Peng, XU Jingang, XU Qianjin, LIU Kunji, PANG Hongchang, NING Guiling. Preparation of nano-alumina slurry and its application in modifying lithium-ion battery cathode material [J]. Inorganic Chemicals Industry, 2023, 55(12): 43-49. |
[11] | YU Jianguo,SUN Qing,QIU Shengbo,ZHANG Yiren,CHEN Jun. Lithium resources development supporting national new energy strategy development [J]. Inorganic Chemicals Industry, 2023, 55(1): 1-14. |
[12] | TANG Di,WANG Junxiong,CHEN Wen,JI Guanjun,MA Jun,ZHOU Guangmin. Research status and prospect on direct regeneration of cathode materials from retired lithium-ion batteries [J]. Inorganic Chemicals Industry, 2023, 55(1): 15-25. |
[13] | XU Qianjin,XU Jingang,TIAN Peng,LIU Kunji,GAO Tingting,NING Guiling. Research progress of alumina coated cathode materials for lithium-ion batteries [J]. Inorganic Chemicals Industry, 2023, 55(1): 46-55. |
[14] | MA Bingxiang,SHEN Yunxia,LI Na,LI Min,WEI Yaoyi,ZHAO Yu. Effect of sulfate on photocatalytic activity of polymerized carbon nitride [J]. Inorganic Chemicals Industry, 2022, 54(9): 150-157. |
[15] | SONG Zhi, LIU Boxia, CHEN Yaoyao. Study on synthesis of FeWO4/WO3 complex by sol-gel and degradation of textile dye wastewater [J]. Inorganic Chemicals Industry, 2022, 54(5): 131-137. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Copyright © 2021 Editorial Office of Inorganic Chemicals Industry
Add:No.3 Road Dingzigu,Hongqiao District,Tianjin,China
E-mail:book@wjygy.com.cn 违法和不良信息举报电话: 022-26689297