Inorganic Chemicals Industry ›› 2025, Vol. 57 ›› Issue (2): 1-13.doi: 10.19964/j.issn.1006-4990.2024-0329
• Reviews and Special Topics • Next Articles
CHEN Xue1,2,3(), JIANG Guanghui1,2,3, OUYANG Quansheng1,2,3(
), SHAO Jiaojing3,4(
)
Received:
2024-06-11
Online:
2025-02-10
Published:
2024-07-22
Contact:
OUYANG Quansheng, SHAO Jiaojing
E-mail:1548582799@qq.com;qsouyang@163.com;shaojiao_jing@163.com
CLC Number:
CHEN Xue, JIANG Guanghui, OUYANG Quansheng, SHAO Jiaojing. Recent research progress of lithium sulfur batteries under lean electrolyte based on sulfur electrode design[J]. Inorganic Chemicals Industry, 2025, 57(2): 1-13.
Fig.4
Schematic of reaction pathways for a sulfur cathode catalyzed by MoP under lean electrolyte conditions(a),cycling performance of MoP-containing sulfur cathode with a low E/S(b)[27],schematic diagrams of band structure of FeP/Fe2P n-n heterostructure before and after contact(c)[30],and a photograph of as-fabricated Li x MoS2-based Li-S pouch cell(inset) and its cycling stability at a current density of 2 mA/cm2(d)[31]"
Fig.5
Binding energy between lithium polysulfides and phosphorene,and carbon hexatomic ring network(a)[36],schematic illustration of fabrication process of NF@VG(b),schematic illustration of Li2S nucleation and growth on NF@VG composite surface(left) and on carbon surface(right)(c)[38],and schematic illustration of synthesis procedure of rGO/C3N4 QDs material(d)[39]"
Table 1
Reference comparison on battery parameters and electrochemical performance"
采用策略和实施方法 | 硫载量/ (mg·cm-2) | E/S | 循环 次数 | 比容量初/末/ (mA·h·g-1) | 能量密度初/末/ (W·h·kg-1) | 文献 | |
---|---|---|---|---|---|---|---|
降低电极迂曲度 | 冰模板法 | 6.00 | 1.2 | 1 | 1 200/- | 481/- | [ |
冰模板法 | 8.80 | 2.0 | 50 | 984/- | 338/- | [ | |
降低电极孔隙率 | 采用大颗粒尺寸电极 | 4.00 | 4.0 | 30 | 1 001/- | - | [ |
创建离子传输通道 | P-10黏结剂 | 6.00 | 4.0 | 100 | 1 182/749 | 344.5/271.4 | [ |
HMT-PMBI(TFSI)黏结剂 | 3.00 | 6.0 | 440 | 796/500 | 172/- | [ | |
CWPU黏结剂 | 6.68 | 8.0 | 35 | 739/617 | - | [ | |
BVIM黏结剂 | 5.50 | 6.4 | 50 | 745/600 | - | [ | |
引入金属基催化剂 | MoP | 6.00 | 6.0 | 50 | /830 | - | [ |
TiN/TiO2@NMPC | 8.20 | 4.7 | 200 | 811/572 | - | [ | |
CNTs@TiN-TiO2 | 15.00 | 10.0 | 100 | 1 433/1326 | - | [ | |
Co0.9Zn0.1Te2@NC | 7.70 | 4.0 | 30 | 1 662/998 | - | [ | |
Li x MoS2 | 7.50 | 2.4 | 200 | 1 094/932 | 441/350 | [ | |
CoNiFePdV | 4.50 | 5.0 | 100 | 710/572 | - | [ | |
FeCoNiZnCu | 4.52 | 7.0 | 80 | 637/467 | - | [ | |
MnP-MnO2@C | 7.10 | 5.0 | 11 | 1 199/1 015 | 429/362.3 | [ | |
TiO2/TiS2 | 7.50 | 2.5 | 30 | 773/703 | 331/301 | [ | |
CuBr QDs/rGO | 8.00 | 3.0 | 50 | 1 075/750 | 375/261 | [ | |
引入非金属基催化剂 | PCNF/BPQD | 8.00 | 6.5 | 200 | 618/550 | - | [ |
NF@VG | 13.00 | 4.8 | 100 | 984/826 | - | [ | |
WLC-CNTs | 52.40 | 6.0 | 100 | 1 245/692 | - | [ | |
g-C3N4/rGO/S@PPy | 5.00 | 10.0 | 100 | 723/600 | - | [ | |
rGO/g-C3N4 QDs | 16.10 | 6.0 | 100 | 1 006/820 | - | [ | |
新型活性材料 | PAN@S | 5.75 | 2.14 | 25 | 448.4/396 | 822.5/798 基于正/负极计算 | [ |
PAN@S0.96Te0.04 | 3.11 | 6.00 | 100 | -/870 | - | [ | |
STI-5 | 4.50 | 8.00 | 130 | -/817 | - | [ |
1 | 刘子琛,张玢,谷思辰,等.钛基化合物在锂硫电池中的应用[J].无机盐工业,2021,53(06):14-22. |
LIU Zichen, ZHANG Bin, GU Sichen,et al.Applications of titanium-based compounds for lithium-sulfur batteries[J].Inorganic Chemicals Industry,2021,53(06):14-22. | |
2 | 宋娅,龙家英,庞驰,等.多级孔碳在锂硫电池正极中的研究进展[J].无机盐工业,2021,53(06):41-48. |
SONG Ya, LONG Jiaying, PANG Chi,et al.Research progress of hierarchically porous carbon in the cathode of lithium-sulfur batteries[J].Inorganic Chemicals Industry,2021,53(06):41-48. | |
3 | 邱志旭,朱绍宽,魏宇霄,等.S/MCNT/Fe3O4正极材料制备及电化学性能研究[J].无机盐工业,2022,54(06):73-77,83. |
QIU Zhixu, ZHU Shaokuan, WEI Yuxiao,et al.Study on preparation and electrochemical performance of S/MCNT/Fe3O4 cathode materials[J].Inorganic Chemicals Industry,2022,54(6):73-77,83. | |
4 | LIU Yatao, ELIAS Y, MENG Jiashen,et al.Electrolyte solutions design for lithium-sulfur batteries[J].Joule,2021,5(9):2323-2364. |
5 | 贾可,黄振锵,张亚楠,等.锂硫电池隔膜修饰材料的研究进展[J].化学工业与工程,2024,41(02):105-119. |
JIA Ke, HUANG Zhenqiang, ZHANG Yanan,et al.Research progress of separator modification materials for lithium-sulfur batteri-es[J].Chemical Industry and Engineering,2024,41(2):105- 119. | |
6 | BI Chenxi, HOU Lipeng, LI Zheng,et al.Protecting lithium metal anodes in lithium-sulfur batteries:A review[J].Energy Material Advances,2023,4.Doi:10.34133/energymatadv.0010. |
7 | LI Xiang, YUAN Lixia, LIU Dezhong,et al.Solid/quasi-solid phase conversion of sulfur in lithium-sulfur battery[J].Small,2022,18(43):2106970. |
8 | SHI Huifa, SUN Weiyi, CAO Jiakai,et al.Challenges and solutions for lithium-sulfur batteries with lean electrolyte[J].Advanc- ed Functional Materials,2023,33(42):2306933. |
9 | FAN F Y, CHIANG Y M.Electrodeposition kinetics in Li-S batteries:Effects of low electrolyte/sulfur ratios and deposition surface co-mposition[J].Journal of the Electrochemical Society,2017,164(4):A917-A922. |
10 | XIE Yong, PAN Guoyu, JIN Qiang,et al.Semi-flooded sulfur cathode with ultralean absorbed electrolyte in Li-S battery[J].Advanced Science,2020,7(9):1903168. |
11 | HAN Zhilong, LI Shuping, XIONG Ruoyu,et al.Low tortuosity and reinforced concrete type ultra-thick electrode for practical lithium-sulfur batteries[J].Advanced Functional Materials,2022,32(12):2108669. |
12 | KANG Ning, LIN Yuxiao, YANG Li,et al.Cathode porosity is a missing key parameter to optimize lithium-sulfur battery energy density[J].Nature Communications,2019,10(1):4597. |
13 | ZHONG Mei′e, GUAN Jindiao, SUN Jingchun, et al.A cost- and energy density-competitive lithium-sulfur battery[J].Energy Storage Materials,2021,41,588-598. |
14 | FENG Shuo, SINGH R K, FU Yucheng,et al.Low-tortuous and dense single-particle-layer electrode for high-energy lithium-sulfur batteries[J].Energy & Environmental Science,2022,15(9):3842-3853. |
15 | FU Yucheng, SINGH R K, FENG Shuo,et al.Understanding of low-porosity sulfur electrode for high-energy lithium-sulfur batteries[J].Advanced Energy Materials,2023,13(13):2203386. |
16 | CHEN Hui, ZHANG Xipin, LI Senlin,et al.Free-standing sulfur cathodes enabled by a cationic polymer for lean electrolyte lithi-um-sulfur batteries[J].ACS Energy Letters,2023,8(1):619- 627. |
17 | PHAM C V, LIU Lili, BRITTON B,et al.Stabilization of Li-S batteries with a lean electrolyte via ion-exchange trapping of lithium polysulfides using a cationic,polybenzimidazolium binder[J].Sustainable Energy & Fuels,2020,4(3):1180-1190. |
18 | CHEN Jing, GENG Xin, WANG Chenyang,et al.An interweaving 3D ion-conductive network binder for high-loading and lean-electrolyte lithium-sulfur batteries[J].Journal of Materials Chemistry A,2024,12(18):11038-11048. |
19 | LI Ling, NAM J S, KIM M S,et al.Sulfur-carbon electrode with PEO-LiFSI-PVDF composite coating for high-rate and long-life lithium-sulfur batteries[J].Advanced Energy Materials,2023,13(36):2302139. |
20 | SHI Yuanhao, LI Dongxia, SUN Xiangfeng,et al.Cationic polymer binder for simultaneously propelling ion transfer and promoting polysulfide conversion in lithium-sulfur batteries[J].ACS Applied Polymer Materials,2024,6(13):7430-7440. |
21 | WANG Jianli, HAN Weiqiang.A review of heteroatom doped materials for advanced lithium-sulfur batteries[J].Advanced Functional Materials,2022,32(2):2107166. |
22 | 周志强,王惠民,杨璐彬,等.金属氧化物/炭复合材料抑制锂硫电池穿梭效应的研究进展[J].新型炭材料,2024,39(02):201-222. |
ZHOU Zhiqiang, WANG Huimin, YANG Lubin,et al.A review of the use of metal oxide/carbon composite materials to inhibit the shuttle effect in lithium-sulfur batteries[J].New Carbon Materials,2024,39(02):201-222. | |
23 | YAN Bo, LI Xifei, XIAO Wei,et al.Design,synthesis,and application of metal sulfides for Li-S batteries:Progress and prospec-ts[J].Journal of Materials Chemistry A,2020,8(35):17848-17882. |
24 | LIU Genlin, YUAN Cheng, ZENG Pan,et al.Bidirectionally catalytic polysulfide conversion by high-conductive metal carbides for lithium-sulfur batteries[J].Journal of Energy Chemistry,2022,67:73-81. |
25 | YANG Jinlin, CAI Daqian, LIN Qiaowei,et al.Regulating the Li2S deposition by grain boundaries in metal nitrides for stable lithium-sulfur batteries[J].Nano Energy,2022,91:106669. |
26 | LIU Xinhang, ZHANG Lirong, MA Xinzhi,et al.Conversion of polysulfides on core-shell CoP@C nanostructures for lithium-sulfur batteries[J].Chemical Engineering Journal,2023,454:140460. |
27 | YANG Yuxiang, ZHONG Yiren, SHI Qiuwei,et al.Electrocatalysis in lithium sulfur batteries under lean electrolyte conditions[J].Angewandte Chemie International Edition,2018,57(47):15549- 15552. |
28 | BAI Yanqun, NGUYEN T T, CHU Rongrong,et al.Heterostructured TiN/TiO2 on the hierarchical N-doped carbon for enhancing the polysulfide immobilization and sulfur reduction in lithium-sulfur battery[J].Chemical Engineering Journal,2023,476:146581. |
29 | ZHANG Hui, ONO L K, TONG Guoqing,et al.Long-life lithium-sulfur batteries with high areal capacity based on coaxial CNTs@TiN-TiO2 sponge[J].Nature Communications,2021,12(1):4738. |
30 | ZHAO Zhenxin, YI Zonglin, DUAN Yunrui,et al.Regulating the d-p band center of FeP/Fe2P heterostructure host with built-in electric field enabled efficient bidirectional electrocatalyst toward advanced lithium-sulfur batteries[J].Chemical Engineering Journal,2023,463:142397. |
31 | LI Zhuangnan, SAMI I, YANG J,et al.Lithiated metallic molybdenum disulfide nanosheets for high-performance lithium-sulfur batteries[J].Nature Energy,2023,8:84-93. |
32 | WANG Bin, WANG Lu, DING Dong,et al.Zinc-assisted cobalt ditelluride polyhedra inducing lattice strain to endow efficient adsorption-catalysis for high-energy lithium-sulfur batteries[J].Advanced Materials,2022,34(50):2204403. |
33 | XU Yunhan, YUAN Wenchuang, GENG Chuannan,et al.High-entropy catalysis accelerating stepwise sulfur redox reactions for lithium-sulfur batteries[J].Advanced Science,2024,11(31):2402497. |
34 | CHEN Liping, WU Dingding, LI Xin,et al.Modifying the electron structure of an FeCoNiZnCu high-entropy alloy with the introduction of Cu to facilitate the catalytic effect in lithium sulfur batteries[J].Journal of Materials Chemistry A,2024,12:17651-17662. |
35 | ZHOU Guangmin, ZHAO Shiyong, WANG Tianshuai,et al.Theoretical calculation guided design of single-atom catalysts toward fast kinetic and long-life Li-S batteries[J].Nano Letters,2020,20(2):1252-1261. |
36 | LI Lu, CHEN Long, MUKHERJEE S,et al.Phosphorene as a polysulfide immobilizer and catalyst in high-performance lithium-sulfur batteries[J].Advanced Materials,2017,29(2)1602734 |
37 | XU Zhenglong, LIN Shenghuang, ONOFRIO N,et al.Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries[J].Nature Communications,2018,9(1):4164. |
38 | LIN Junsheng, MO Yangcheng, LI Shiwen,et al.Nitrogen-doped porous carbon fiber/vertical graphene as an efficient polysulfide conversion catalyst for high-performance lithium-sulfur batteri-es[J].Journal of Materials Chemistry A,2022,10(2):690-698. |
39 | ZHAO Dengke, XU Zirui, YU Xiaolong,et al.One stone two bird:Reduced oxide graphene supported g-C3N4 quantum dots implements efficient capturing/catalytic polysulfides conversion and high sulfur loading for lithium-sulfur battery[J].Chemical Engineering Journal,2023,474:145983. |
40 | JIN Chengbin, ZHANG Wenkui, ZHUANG Zhenzhan,et al.Enhanced sulfide chemisorption using boron and oxygen dually doped multi-walled carbon nanotubes for advanced lithium-sulfur batteries[J].Journal of Materials Chemistry A,2017,5(2):632-640. |
41 | WANG Nana, ZHANG Xiao, JU Zhengyu,et al.Thickness-independent scalable high-performance Li-S batteries with high areal sulfur loading via electron-enriched carbon framework[J].Nature Communications,2021,12(1):4519. |
42 | MOON S H, SHIN J H, KIM J H,et al.Polypyrrole coated g-C3N4/rGO/S composite as sulfur host for high stability lithium-sulfur batteries[J].Materials Chemistry and Physics,2022,287:126267. |
43 | SHUAI Yi, WANG Dudan, CHEN Kanghua,et al.Highly stable performance of lithium-sulfurized polyacrylonitrile batteries using a lean ether-based electrolyte[J].Chemical Communications,2019,55(75):11271-11274. |
44 | CHEN Jiahang, LU Huichao, ZHANG Xuan,et al.Electrochemical polymerization of nonflammable electrolyte enabling fast-charging lithium-sulfur battery[J].Energy Storage Materials,2022,50:387-394. |
45 | LI Shuping, HAN Zhilong, HU Wei,et al.Manipulating kinetics of sulfurized polyacrylonitrile with tellurium as eutectic accelerator to prevent polysulfide dissolution in lithium-sulfur battery under dissolution-deposition mechanism[J].Nano Energy,2019,60:153-161. |
46 | LI Xiang, LIU Dezhong, CAO Ziyi,et al.Uncovering the solid-phase conversion mechanism via a new range of organosulfur polymer composite cathodes for lithium-sulfur batteries[J].Journal of Energy Chemistry,2023,84:459-466. |
47 | LIANG Fengxing, DENG Qiao, NING Shunyan,et al.Mastering surface sulfidation of MnP-MnO2 heterostructure to facilitate efficient polysulfide conversion in Li-S batteries[J].Advanced Science,2024,11(32):2403391. |
48 | NGUYEN V P, QURESHI Y, SHIM H C,et al.Intercalation-conversion hybrid cathode enabled by MXene-driven TiO2/TiS2 heterostructure for high-energy-density Li-S battery[J].Small Structures,2024,5(8):2400196. |
49 | WANG Hao, DENG Nanping, LU Yayi,et al.Constructing heterojunction on N-doped porous carbon nanofibers for Li-S batteries:Effect of built-in electric field on efficient catalytic transformation kinetics[J].Applied Catalysis B:Environment and Energy,2024,357:124289. |
50 | FENG Ruiping, ZHANG Jie, LIU Zheng,et al.Promoting sulfur redox reactions by CuBr quantum dot-based electrocatalyst for lean-electrolyte lithium-sulfur batteries[J].Journal of Alloys and Compounds,2024,999:175064. |
[1] | CHEN Xue, OUYANG Quansheng, SHAO Jiaojing. Recent research progress of lithium-sulfur batteries based on solid-solid reaction mechanism [J]. Inorganic Chemicals Industry, 2024, 56(9): 12-23. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Copyright © 2021 Editorial Office of Inorganic Chemicals Industry
Add:No.3 Road Dingzigu,Hongqiao District,Tianjin,China
E-mail:book@wjygy.com.cn 违法和不良信息举报电话: 022-26689297