镁铝水滑石对高铁低钙硅酸盐水泥性能的影响
收稿日期: 2023-06-25
网络出版日期: 2024-04-18
基金资助
国家自然科学基金-重点支持项目-促进海峡两岸科技合作联合基金项目(U1905216)
Effect of MgAl-layered double hydroxides on properties of high-iron low-calcium portland cement
Received date: 2023-06-25
Online published: 2024-04-18
采用成核晶化隔离法合成了镁铝水滑石(MgAl-LDH),并利用石灰石、砂岩和铁矿粉制备了高铁低钙硅酸盐水泥熟料(铁相质量分数为19.6%)。通过X射线衍射(XRD)、热重(TG)、扫描电镜(SEM)和化学分析法,研究了MgAl-LDH掺量对高铁低钙水泥氯离子固化能力、力学性能和微观结构的影响规律。结果表明:MgAl-LDH能显著提升高铁低钙水泥化学固化氯离子能力及力学性能;当MgAl-LDH掺量为3%(质量分数)时,与空白组相比,7 d氯离子固化率提升了46.4%,3、7、28 d抗压强度分别提高了27.5%、34.6%和17.1%。微观测试表明MgAl-LDH能促进高铁低钙水泥早期水化生成更多的水化产物,在一定程度上促进了水泥结构的致密化;并且能促进水化产物和氯离子发生反应生成Friedel′s盐,提升了高铁低钙水泥对氯离子的化学固化量。
关键词: 镁铝水滑石; 高铁低钙水泥; 氯离子固化; 力学性能; Friedel′s盐
李珂珂 , 薛江伟 , 王露威 , 管学茂 . 镁铝水滑石对高铁低钙硅酸盐水泥性能的影响[J]. 无机盐工业, 2024 , 56(4) : 57 -63 . DOI: 10.19964/j.issn.1006-4990.2023-0339
MgAl-layered double hydroxides(MgAl-LDH) were synthesized using a separate nucleation and aging steps(SNAS) method,and high-iron low-calcium portland cement(iron phase mass fraction of 19.6%) was prepared by limestone,standstone and iron ore powder.The effects of MgAl-LDH content on the chloride curing ability,mechanical properties and microstructure of high-iron low-calcium cement were studied by X-ray diffraction(XRD),thermogravimetric(TG),scanning electron microscopy(SEM),and chemical analysis methods.The results showed that MgAl-LDH could improve the mechanical properties and chemical curing ability of chloride ions.When MgAl-LDH content was 3%(mass fraction),compared with the blank group,the chloride ion curing rate at 7 d was increased by 46.4%,and the compressive strength at 3,7 d and 28 d was increased by 27.5%,34.6% and 17.1%,respectively.The microscopic tests showed that MgAl-LDH could promote the early hydration of high-iron low-calcium cement to generate more hydration products,and promote the densification of cement structure to a certain extent.And it could promote the reaction of hydration products and chloride ions to form Friedel's salt,and improve the chemical curing amount of chloride ions.
1 | EL-DIEB A S, EL-MAADDAWY T A. Assessment of reinforcement corrosion protection of self-curing concrete[J]. Journal of Building Engineering, 2018, 20:72-80. |
2 | 高金瑞, 饶美娟, 张克昌, 等. 铁相组分对铁相和高铁低钙水泥熟料水化性能及抗侵蚀性能影响[J]. 硅酸盐通报, 2021, 40(4):1097-1102,1115. |
GAO Jinrui, RAO Meijuan, ZHANG Kechang, et al. Effect of iron phase component on hydration performance and corrosion resistance of iron phase and high-iron low-calcium cement clinker[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(4):1097-1102,1115. | |
3 | 张高展, 王宇譞, 杨军, 等. 骨料对混凝土中氯离子传输特性的影响进展[J]. 功能材料, 2022, 53(8):8036-8044. |
ZHANG Gaozhan, WANG Yuxuan, YANG Jun, et al. Review on chloride ion transport behavior in concrete materials:The influence of aggregate[J]. Journal of Functional Materials, 2022, 53(8):8036-8044. | |
4 | 张忠飞, 陈平, 赵艳荣, 等. 不同C4AF含量高铁低钙硅酸盐水泥性能研究[J]. 非金属矿, 2021, 44(4):44-46,49. |
ZHANG Zhongfei, CHEN Ping, ZHAO Yanrong, et al. Study on properties of high-iron low-calcium Portland cement with different C4AF content[J]. Non-Metallic Mines, 2021, 44(4):44-46,49. | |
5 | CUESTA A, SANTACRUZ I, SANFéLIX S G, et al. Hydration of C4AF in the presence of other phases:A synchrotron X-ray powder diffraction study[J]. Construction and Building Materials, 2015, 101:818-827. |
6 | ROSE J, BéNARD A, MRABET S EL, et al. Evolution of iron speciation during hydration of C4AF[J]. Waste Management, 2006, 26(7):720-724. |
7 | XUE Jiangwei, LIU Songhui, MA Xiaoe, et al. Effect of different gypsum dosage on the chloride binding properties of C4AF hydrated paste[J]. Construction and Building Materials, 2022, 315:125562. |
8 | 邹瑜. LDHs功能材料在建筑领域的应用研究进展[J]. 无机盐工业, 2022, 54(6):13-22. |
ZOU Yu. Research progress on application of LDHs functional materials in field of construction[J]. Inorganic Chemicals Industry, 2022, 54(6):13-22. | |
9 | 宋学锋, 张俊涛, 崔贺龙, 等. 热处理水滑石对普通硅酸盐水泥和碱矿渣水泥抗碳化性能的影响[J]. 硅酸盐通报, 2019, 38(11):3379-3384. |
SONG Xuefeng, ZHANG Juntao, CUI Helong, et al. Effect of calcined layered double hydroxides on carbonation resistance of ordinary Portland cement and alkali-activated slag cement[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(11):3379-3384. | |
10 | GUAN Xuemao, LI Haiyan, LUO Shuqiong, et al. Influence of LiAl-layered double hydroxides with 3D micro-nano structures on the properties of calcium sulphoaluminate cement clinker[J]. Cement and Concrete Composites, 2016, 70:15-23. |
11 | 李海艳, 刘小星, 司鹤洋, 等. 纳米类水滑石对硫铝酸盐水泥熟料水化硬化规律的影响[J]. 硅酸盐学报, 2018, 46(7):887-894. |
LI Haiyan, LIU Xiaoxing, SI Heyang, et al. Effect of nano-layered double hydroxides on hydration and hardening of calcium sulphoaluminate cement clinker[J]. Journal of the Chinese Ceramic Society, 2018, 46(7):887-894. | |
12 | FLOREA M V A, BROUWERS H J H. Chloride binding related to hydration products[J]. Cement and Concrete Research, 2012, 42(2):282-290. |
13 | 刘松辉, 管学茂, 邱满, 等. 通过加速碳化激发γ-C2S矿物的活性[J]. 硅酸盐学报, 2016, 44(5):658-662. |
LIU Songhui, GUAN Xuemao, QIU Man, et al. Activation of γ-C2S mineral by accelerated carbonation[J]. Journal of the Chinese Ceramic Society, 2016, 44(5):658-662. | |
14 | 畅祥祥, 刘松辉, 张程, 等. 胶砂比对低钙固碳胶凝材料砂浆碳化硬化性能的影响[J]. 功能材料, 2022, 53(4):4142- 4149. |
CHANG Xiangxiang, LIU Songhui, ZHANG Cheng, et al. Effect of cement-sand ratio on carbonation hardening properties of low calcium CO2 sequestration binder mortar[J]. Journal of Functional Materials, 2022, 53(4):4142-4149. | |
15 | TANG Luping, NILSSON L O. Chloride binding capacity and binding isotherms of OPC pastes and mortars[J]. Cement and Concrete Research, 1993, 23(2):247-253. |
16 | ZHAO Ruiqi, ZHANG Li, FAN Guangxin, et al. Probing the exact form and doping preference of magnesium in ordinary Portland cement clinker phases:A study from experiments and DFT simulations[J]. Cement and Concrete Research, 2021, 144:106420. |
17 | áLVAREZ-PINAZO G, CUESTA A, GARCíA-MATé M, et al. Rietveld quantitative phase analysis of Yeelimite-containing cements[J]. Cement and Concrete Research, 2012, 42(7):960- 971. |
18 | MATSCHEI T, LOTHENBACH B, GLASSER F P. The AFm phase in Portland cement[J]. Cement and Concrete Research, 2007, 37(2):118-130. |
19 | FORTUNE J M, COEY J M D. Hydration products of calcium aluminoferrite[J]. Cement and Concrete Research, 1983, 13(5):696-702. |
20 | GENG Jian, PAN Chonggen, WANG Yu, et al. Chloride binding in cement paste with calcined Mg-Al-CO3 LDH(CLDH) under different conditions[J]. Construction and Building Materials, 2021, 273:121678. |
21 | 腾一标. 三乙醇胺对水泥基材料固化氯离子性能的影响[D]. 焦作: 河南理工大学, 2022. |
TENG Yibiao. Effect of triethanolamine on binding chloride ion properties of cement-based materials[D]. Jiaozuo: Henan Polytechnic University, 2022. | |
22 | 苏少龙, 曲晓龙, 钟读乐, 等. 工业氢氧化钙中氧化钙、氢氧化钙及碳酸钙测定方法的研究[J]. 无机盐工业, 2020, 52(5):75-77. |
SU Shaolong, QU Xiaolong, ZHONG Dule, et al. Study on determination of CaO,Ca(OH)2 and CaCO3 in industrial calcium hydroxide[J]. Inorganic Chemicals Industry, 2020, 52(5):75-77. | |
23 | 朱明, 曾浪, 饶美娟. 高铁低钙硅酸盐水泥体系的抗氯离子侵蚀性能研究[J]. 硅酸盐通报, 2018, 37(10):3136-3140. |
ZHU Ming, ZENG Lang, RAO Meijuan. Resistance to chloride ion erosion of high-iron low-calcium silicate cement[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(10):3136-3140. |
/
〈 |
|
〉 |