无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
催化材料

过渡金属负载Silicalite-1分子筛的制备及其催化糠醛加氢性能研究

  • 狄璐 ,
  • 王卫国 ,
  • 陈珏先 ,
  • 吴传淑
展开
  • 1.南开大学材料科学与工程学院,天津 300350
    2.武警后勤学院,天津 300309
狄璐(1988— ),女,实验师,博士,主要从事大型仪器的测试和管理工作;E-mail:dilu@nankai.edu.cn
吴传淑(1989— ),女,讲师,硕士,主要从事分子筛材料的合成与表征研究;E-mail:wuchuanshu2010@126.com

收稿日期: 2023-08-29

  网络出版日期: 2024-04-18

基金资助

国家自然科学基金项目(21905144);南开大学2022年自制实验教学仪器设备类项目(气态流动鼓泡反应器的研制)

Study on preparation of transition metal-supported Silicalite-1 zeolite catalyst and its catalytic performance for furfural hydrogenation

  • DI Lu ,
  • WANG Weiguo ,
  • CHEN Juexian ,
  • WU Chuanshu
Expand
  • 1.School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
    2.Logistics University of PAPF, Tianjin 300309, China

Received date: 2023-08-29

  Online published: 2024-04-18

摘要

糠醛是一种重要的生物质平台分子,研发具有高活性和稳定性的糠醛加氢催化剂是当前的研究焦点,但贵金属催化剂的高成本问题使得其难以满足大规模工业生产的需求。利用一步水热法成功地合成了过渡金属负载Silicalite-1分子筛催化剂,并探讨了引入不同类型的过渡金属(如Ni、Co、Cu和Fe)对Silicalite-1分子筛结构产生的影响。研究结果表明:低金属负载量并不会对分子筛结构的形成产生影响,同时金属物种在分子筛载体的表面也能均匀分布。在糠醛的加氢转化过程中,Ni基催化剂S-Ni2展现出优异的糠醛转化能力,糠醛的转化率高达96%,产物呋喃的选择性保持在71%左右。Cu基催化剂S-Cu1表现出优异的糠醇选择性,产物选择性接近100%,这一性能明显优于通过浸渍法制得的铜基催化剂(76%)。因此,与浸渍法相比,采用一步水热法可以获得具有高选择性的催化剂,且该方法简单易操作。本研究为寻找高效、稳定且经济的金属加氢催化剂开辟了新的方向,并促进了生物质资源的高值化应用。

本文引用格式

狄璐 , 王卫国 , 陈珏先 , 吴传淑 . 过渡金属负载Silicalite-1分子筛的制备及其催化糠醛加氢性能研究[J]. 无机盐工业, 2024 , 56(4) : 125 -132 . DOI: 10.19964/j.issn.1006-4990.2023-0423

Abstract

Furfural is an important biomass-derived platform molecule,and developing robust catalysts with high activity and stability for furfural hydrogenation is a research hotspot.However,noble metal catalysts suffer from high costs,which cannot satisfy the demand towards large-scale industrial production.Herein,the transition metal-supported Silicalite-1 zeolite catalysts were successfully synthesized by a one-step hydrothermal method,and the influence of the introduction of four different types of transition metal elements on the structure of the Silicalite-1 zeolite was studied.Comprehensive characterization results showed that the crystallinity of the zeolite was not affected by low metal loading,and the metal species were uniformly dispersed on the surface of zeolite.In the hydrogenation of furfural,Ni-based catalyst S-Ni2 showed excellent catalytic activity toward furfural transformation with 96% furfural conversion and 71% furan selectivity.Cu-based catalyst S-Cu1 showed extraordinary selectivity toward furfuryl alcohol(100%),which was much higher than that over Cu-based catalyst prepared by impregnation method(76%).Therefore,compared with the impregnation method,one-step hydrothermal method could be used to obtain a catalyst with high selectivity,and the method wass also simple and easy to operate.This work would open up a new direction for developing highly efficient,stable,and low-cost hydrogenation catalysts,and promote the valorization of biomass.

参考文献

1 王鹏, 赵山山, 卢雁飞, 等. 铜系材料的制备及其催化丁二酸二甲酯加氢的性能探究[J]. 无机盐工业202355(10):145-152.
  WANG Peng, ZHAO Shanshan, LU Yanfei, et al. Study on preparation of copper-based materials and its catalytic performance for hydrogenation of dimethyl succinate[J]. Inorganic Chemicals Industry202355(10):145-152.
2 李亮荣, 付兵, 刘艳, 等. 生物质衍生物重整制氢研究进展[J]. 无机盐工业202153(9):12-17.
  LI Liangrong, FU Bing, LIU Yan, et al. Research progress of hydrogen production by reforming biomass-derived compounds[J]. Inorganic Chemicals Industry202153(9):12-17.
3 LEE K, JING Yaxuan, WANG Yanqin, et al. A unified view on catalytic conversion of biomass and waste plastics[J]. Nature Reviews Chemistry20226(9):635-652.
4 JASWAL A, SINGH P P, MONDAL T. Furfural:A versatile,biomass-derived platform chemical for the production of renewable chemicals[J]. Green Chemistry202224(2):510-551.
5 郑修新, 蒋志魁, 孙国方, 等. 糠醇加氢制1,2-戊二醇催化剂的制备及性能研究[J]. 无机盐工业202052(6):96-100.
  ZHENG Xiuxin, JIANG Zhikui, SUN Guofang, et al. Study on preparation and properties of 1,2-pentanediol catalyst by hydrogenation of furfuryl alcohol[J]. Inorganic Chemicals Industry202052(6):96-100.
6 XIAO Tao, YAN Peijian, LI Kaijie, et al. Hollow mesoporous nanoreactors with encaged PtSn alloy nanoparticles for selective hydrogenation of furfural to furfuryl alcohol[J]. Industrial & Engineering Chemistry Research202160(17):6078-6088.
7 SITTHISA S, RESASCO D E. Hydrodeoxygenation of furfural over supported metal catalysts:A comparative study of Cu,Pd and Ni[J]. Catalysis Letters2011141(6):784-791.
8 GUERRERO-TORRES A, JIMéNEZ-GóMEZ C P, CECILIA J A, et al. Ni supported on sepiolite catalysts for the hydrogenation of furfural to value-added chemicals:Influence of the synthesis method on the catalytic performance[J]. Topics in Catalysis201962(5):535-550.
9 SUNYOL C, ENGLISH OWEN R, GONZáLEZ M D, et al. Catalytic hydrogenation of furfural to tetrahydrofurfuryl alcohol using competitive nickel catalysts supported on mesoporous clays[J]. Applied Catalysis A:General2021611:117903.
10 MENG Xiaoyu, YANG Yusen, CHEN Lifang, et al. A control over hydrogenation selectivity of furfural via tuning exposed facet of Ni catalysts[J]. ACS Catalysis20199(5):4226-4235.
11 LUO Lin, YUAN Fulong, ZAERA F, et al. Catalytic hydrogenation of furfural to furfuryl alcohol on hydrotalcite-derived Cu x Ni3- x AlO y mixed-metal oxides[J]. Journal of Catalysis2021404:420-429.
12 JIMéNEZ-GóMEZ C P, CECILIA J A, DURáN-MARTíN D, et al. Gas-phase hydrogenation of furfural to furfuryl alcohol over Cu/ZnO catalysts[J]. Journal of Catalysis2016336:107-115.
13 洪美花, 郭子峰, 刘冠锋, 等. 碱处理方法合成多级孔分子筛的进展与挑战[J]. 无机盐工业202355(6):36-42.
  HONG Meihua, GUO Zifeng, LIU Guanfeng, et al. Progress and challenges of alkaline treatment for synthesis of hierarchical zeolites[J]. Inorganic Chemicals Industry202355(6):36-42.
14 YUAN Qiang, PANG Jifeng, YU Wenguang, et al. Vapor-phase furfural decarbonylation over a high-performance catalyst of 1%Pt/SBA-15[J]. Catalysts202010(11):1304.
15 YE Tiantian, LIU Hanfang, WANG Fupeng, et al. Pd@silicate-1 synthesized by steam-assisted-crystallization strategy for high-efficient catalytic hydrogenation of furfural[J]. Journal of Porous Materials202229(5):1479-1487.
文章导航

/