不同粒径薄水铝石微晶的合成及其脱水动力学分析
收稿日期: 2023-01-01
网络出版日期: 2023-11-16
基金资助
江西省技术创新引导类计划项目-科技合作专项(2021BDH81011);江西省主要学科和技术带头人培养计划项目(20213BCJ22020)
Synthesis and dehydration dynamics of boehmite microcrystalline with different particle sizes
Received date: 2023-01-01
Online published: 2023-11-16
深入探究薄水铝石的粒径调控及其转变成氧化铝的热分解机理对精细氧化铝的合成具有重要意义。采用拟薄水铝石作为晶种辅助氢氧化铝水热调控薄水铝石颗粒尺寸,并探究了该方法的普适性;通过对不同粒径薄水铝石的煅烧实验及脱水过程进行动力学分析,探究粒径对薄水铝石转变过程的影响机理。结果表明:加入不同比例的拟薄水铝石晶种可以制备出平均粒径D50分别为2.02、0.96、0.66 μm的薄水铝石微晶,不同工艺生产的晶种具有相同的调控效果;不同粒径的薄水铝石的脱水过程受不同动力学反应机理控制,且随着粒径的减小,脱水过程的活化能逐渐降低。该研究为调变薄水铝石颗粒尺寸提供一条新的有效途径,为薄水铝石作为前驱体制备精细氧化铝提供理论基础。
田朋 , 周若辉 , 徐前进 , 刘坤吉 , 庞洪昌 , 宁桂玲 . 不同粒径薄水铝石微晶的合成及其脱水动力学分析[J]. 无机盐工业, 2023 , 55(11) : 27 -36 . DOI: 10.19964/j.issn.1006-4990.2023-0001
It is of great significance to explore the particle size regulation of boehmite and the thermal decomposition mechanism of boehmite into alumina for the synthesis of fine alumina.Pseudo-boehmite was used as a seed to assist aluminum hydroxide hydrothermal to regulate the particle size of boehmite,and the universality of this method was explored.Through the kinetic analysis of the calcination experiment and the dehydration process of boehmite with different particle sizes,the influence mechanism of particle size on the transformation process of boehmite was explored.The results showed that the addition of different proportions of pseudo-boehmite seeds could prepare boehmite microcrystalline with average particle size D50 of 2.02,0.96 and 0.66 μm,respectively.The seeds produced by different processes had the same control effect.The dehydration process of boehmite with different particle sizes was controlled by different kinetic reaction mechanisms,and as the particle size decreased,the activation energy of the dehydration process was gradually decreased.This study provided a new effective way to adjust the particle size of boehmite,and provided a theoretical basis for the preparation of fine alumina from boehmite as a precursor.
Key words: boehmite; alumina; grain size; dynamics; activation energy; crystal seed
1 | STAMIRES D, O'CONNOR P, PEARSON G,et al.Process for the preparation of quasi-crystalline boehmites from inexpensive precursors:US,6689333[P].2004-02-10. |
2 | KARGER-KOCSIS J, LENDVAI L.Polymer/boehmite nanocomposites:A review[J].Journal of Applied Polymer Science,2018,135(24):45573. |
3 | NISHIMURA S, LE S D, ASAI Y,et al.Boehmite-derived aluminum oxide catalyst for a continuous intramolecular aldol condensation of 2,5-hexanedione to 3-methyl-2-cyclopentenone in a liquid-flow reactor system[J].Chemistry Letters,2022,51(2):131- 134. |
4 | RAVINDRAN A R, LADANI R B, ZAVABETI A,et al.Liquid metal synthesis of two-dimensional aluminium oxide platelets to reinforce epoxy composites[J].Composites Science and Technology,2019,181:107708. |
5 | 曹伟娜,任昆仑,李莉,等.勃姆石改性PET复合材料的阻燃和增强机理研究[J].中国塑料,2019,33(7):32-37. |
CAO Weina, REN Kunlun, LI Li,et al.Flame retardancy and reinforcing mechanism of boehemite-modified PET composites[J].China Plastics,2019,33(7):32-37. | |
6 | 虞瑞雷,叶定坤,叶耀挺,等.勃姆石协同氢氧化镁阻燃尼龙复合材料及其制备方法和应用:中国,110343383B[P].2022-04-01. |
7 | WANG Yuan, WANG Qiulin, WEI Xiuqin,et al.A novel three-dimensional boehmite nanowhiskers network-coated polyethylene separator for lithium-ion batteries[J].Ceramics International,2021,47(7):10153-10162. |
8 | ZHONG Guobin, WANG Yong, WANG Chao,et al.An AlOOH-coated polyimide electrospun fibrous membrane as a high-safety lithium-ion battery separator[J].Ionics,2019,25(6):2677-2684. |
9 | WANG Yuan, WANG Qiulin, LAN Yu,et al.Aqueous aluminide ceramic coating polyethylene separators for lithium-ion batteri- es[J].Solid State Ionics,2020,345:115188. |
10 | LIU Kefan, YANG Chengyuan, LI Xiaogang,et al.Controllable coaxial coating of boehmite on the surface of polyimide nanofiber membrane and its application as a separator for lithium-ion batteries[J].Energy Technology,2022,10(4):2100982. |
11 | GOONERATNE R, IROH J O.Thermomechanical and pre-ignition properties of multicomponent poly(vnylidene fluoride)/aluminum oxide/single-walled carbon nanotube hybrid nanocomposites[J].Journal of Composites Science,2022,6(12):380. |
12 | NOWECK K, SCHIMANSKI J, JUHL J,et al.Boehmitic aluminas,and high-temperature stabile and highly porous aluminum oxides in a pure phase which are obtained therefrom:US,6773690[P].2004-08-10. |
13 | 川上义贵,曾我部康平,梅田铁.氧化铝和使用其的汽车催化剂的制造方法:中国,109476493A[P].2021-06-11. |
14 | 苏少龙,李晓云,杨文建,等.一种球形氧化铝的制备方法:中国,109179465B[P].2021-02-23. |
15 | NASU T, ASUMA A.Alumina powder for sintering:JP,2020105047A[P].2020-07-09. |
16 | CIGANE U, PALEVICIUS A, JANUSAS G.Vibration-assisted synthesis of nanoporous anodic aluminum oxide(AAO) membranes[J].Micromachines,2022,13(12):2236. |
17 | VEIGA L P DA, JEANGUENAT C, LISCO F,et al.Ultrathin ALD aluminum oxide thin films suppress the thermal shrinkage of battery separator membranes[J].ACS Omega,2022,7(49):45582-45589. |
18 | 尾崎裕谦,安东博幸.氧化铝和含有其的浆料、和氧化铝多孔膜、层叠隔板、非水电解液二次电池及其制造方法:中国,109119576B[P].2020-01-03. |
19 | HARMENING T, SCHONEBORN M, JAGER A K.Alumina bismuth catalyst support and method for its production field of the invention:EP,3827897A1[P].2021-06-02. |
20 | 吴永峰.勃姆石高温煅烧相变及溶出活性研究[J].世界有色金属,2020(4):9-10. |
WU Yongfeng.Study on the phase transition and digestion performance of boehmite at high temperature[J].World Nonferrous Metals,2020(4):9-10. | |
21 | YANG Yongyu, TIAN Peng, GAO Tingting,et al.Synthesis of controlled-particle-size boehmite for coating lithium-ion battery separators[J].New Journal of Chemistry,2023,47(5):2211-2220. |
22 | 杨永钰,田朋,周若辉,等.氢氧化铝活化对水热法制备勃姆石的影响[J].无机盐工业,2022,54(9):55-62. |
YANG Yongyu, TIAN Peng, ZHOU Ruohui,et al.Effect of gibbsite activation on preparation of boehmite by hydrothermal method[J].Inorganic Chemicals Industry,2022,54(9):55-62. | |
23 | POPESCU C.Integral method to analyze the kinetics of heterogeneous reactions under non-isothermal conditions A variant on the Ozawa-Flynn-Wall method[J].Thermochimica Acta,1996, 285(2):309-323. |
24 | ZHANG Jianjun, REN Ning.A new kinetic method of processing TA data[J].Chinese Journal of Chemistry,2004,22(12):1459-1462. |
25 | 杨仲禹.一种材料热分析动力学参数的获取方法:中国,113008931A[P].2021-06-22. |
26 | NAQVI S R, TARIQ R, HAMEED Z,et al.Pyrolysis of high-ash sewage sludge:Thermo-kinetic study using TGA and artificial neural networks[J].Fuel,2018,233:529-538. |
27 | 任宁,张秀芳,白继海,等.Popescu法研究一水合乙酸铜的热分解动力学[J].河北师范大学学报,2005,29(6):584-587. |
REN Ning, ZHANG Xiufang, BAI Jihai,et al.Study on thermal decomposition kinetics of copper acetate dihydrate with popescu method[J].Journal of Hebei Normal University(Natural Science),2005,29(6):584-587. | |
28 | XU Bingan, SMITH P.Dehydration kinetics of boehmite in the temperature range 723-873 K[J].Thermochimica Acta,2012,531:46-53. |
29 | 彭志宏,李琼芳,周秋生.氢氧化铝脱水过程的动力学研究[J].轻金属,2010(5):16-18. |
PENG Zhihong, LI Qiongfang, ZHOU Qiusheng.Studies on dehydration kinetics of aluminium hydroxide[J].Light Metals,2010(5):16-18. | |
30 | KAZANTSEV S O, BAKINA O V, PERVIKOV A V,et al.Antimicrobial activity and sorption behavior of Al2O3/Ag nanocomposites produced with the water oxidation of bimetallic Al/Ag nanoparticles[J].Nanomaterials,2022,12(21):3888. |
31 | ABDOU N Y, SABRY M, EL-FARAMAWY N.Thermoluminescence characteristics of different phase transitions from nanocrystalline alumina[J].Journal of Radioanalytical and Nuclear Chemistry,2022,331(9):3865-3876. |
32 | NAMPI P P, GHOSH S, WARRIER K G.Calcination and associated structural modifications in boehmite and their influence on high temperature densification of alumina[J].Ceramics International,2011,37(8):3329-3334. |
33 | 高振昕,贺中央,郑小平,等.拜尔法三水铝石受热相变的形貌特征[J].硅酸盐学报,2008,36(S1):117-123. |
GAO Zhenxin, HE Zhongyang, ZHENG Xiaoping,et al.Phase transformation and morphology of bayer-gibbsite during heating[J].Journal of the Chinese Ceramic Society,2008,36(S1):117-123. | |
34 | 张智慧,李楠,阮国智. γ-Al2O3和α-Al2O3与其对应的氢氧化物对合成尖晶石的影响[J].耐火材料,2007,41(1):33- 36. |
ZHANG Zhihui, LI Nan, RUAN Guozhi.Influence of γ-Al2O3 and α-Al2O3 and their corresponding hydroxides on synthesis of spinel[J].Refractories,2007,41(1):33-36. | |
35 | WANG Haipeng, XU Bingan, SMITH P,et al.Kinetic modelling of gibbsite dehydration/amorphization in the temperature range 823-923 K[J].Journal of Physics and Chemistry of Solids,2006,67(12):2567-2582. |
36 | 范伟东,李旺兴,韩东战,等.粒度对氢氧化铝低温相变动力学的影响[J].化工进展,2020,39(3):1101-1107. |
FAN Weidong, LI Wangxing, HAN Dongzhan,et al.Influence of particle size on kinetics of low temperature phase transformation of aluminum hydroxide[J].Chemical Industry and Engineering Progress,2020,39(3):1101-1107. | |
37 | OKADA K, NAGASHIMA T, KAMESHIMA Y,et al.Effect of crystallite size of boehmite on sinterability of alumina ceramics[J].Ceramics International,2003,29(5):533-537. |
38 | OKADA K, NAGASHIMA T, KAMESHIMA Y,et al.Effect of crystallite size on the thermal phase change and porous properties of boehmite[J].Journal of Colloid and Interface Science,2002,248(1):111-115. |
39 | 黎少华,袁方利,胡鹏,等.薄水铝石粒度对煅烧形成α-Al2O3粉体的影响[J].过程工程学报,2006,6(4):580-584. |
LI Shaohua, YUAN Fangli, HU Peng,et al.Influence of boehmite particle size on the formation of α-alumina powder by calcination[J].The Chinese Journal of Process Engineering,2006,6(4):580-584. | |
40 | 关昕,王晶,史忠祥.水热法制备薄水铝石粉体及其脱水动力学分析[J].大连交通大学学报,2018,39(4):77-82. |
GUAN Xin, WANG Jing, SHI Zhongxiang.Preparation and kinetics of dehydration of boehmite by hydrothermal treatment[J].Journal of Dalian Jiaotong University,2018,39(4):77-82. | |
41 | 回佳琦.Al(OH)3制备Al2O3过程中动力学模拟及低温煅烧工艺研究[D].西宁:青海大学,2019. |
HUI Jiaqi.Kinetic calculation and low-temperature calcination process of Al(OH)3 prepared Al2O3 [D].Xining:Qinghai University,2019. |
/
〈 |
|
〉 |