无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
锂资源开发与利用

铝基吸附剂固定床分离卤水锂资源过程研究

  • 陈君 ,
  • 钟静 ,
  • 林森 ,
  • 于建国
展开
  • 1.华东理工大学国家盐湖资源综合利用工程技术研究中心, 上海 200237
    2.华东理工大学锂钾战略资源国际联合实验室, 上海 200237
陈君(1997— ),女,博士研究生,主要研究方向为复杂卤水体系锂分离材料与技术;E-mail:jchen_2020@163.com

收稿日期: 2022-10-12

  网络出版日期: 2023-01-17

基金资助

国家自然科学基金(U20A20142);青海省重大科技专项(2019-GX-A7)

Study on lithium separation from brine by aluminum-based adsorbent in fixed bed

  • Jun CHEN ,
  • Jing ZHONG ,
  • Sen LIN ,
  • Jianguo YU
Expand
  • 1. National Engineering Research Center for Integrated Utilization of Salt Lake Resources,East China University of Science and Technology,Shanghai 200237,China
    2. Joint International Laboratory for Potassium and Lithium Strategic Resources,East China University of Science and Technology,Shanghai 200237,China

Received date: 2022-10-12

  Online published: 2023-01-17

摘要

铝基锂吸附剂是一种非常适用于低锂品位、高镁锂比盐湖卤水提锂的吸附剂,具有无溶损、稳定性高等优点,也是目前唯一一种已投入工业化生产的吸附剂。使用自制的球形铝基锂吸附剂GLDH填充固定床,系统研究了吸附温度、进料流速、初始锂离子浓度和床层高度对GLDH固定床分离卤水锂资源过程中吸附穿透曲线的影响。结果表明:升高温度、增加床层高度、降低初始锂离子浓度和进料流速会导致穿透时间延长、穿透吸附容量升高。采用BDST、Clark、Thomas、Y-N和M-D-R 5种经验模型对锂吸附穿透曲线进行拟合,确定M-D-R模型能够较准确地描述固定床锂吸附过程。

本文引用格式

陈君 , 钟静 , 林森 , 于建国 . 铝基吸附剂固定床分离卤水锂资源过程研究[J]. 无机盐工业, 2023 , 55(1) : 64 -73 . DOI: 10.19964/j.issn.1006-4990.2022-0605

Abstract

Aluminum-based lithium adsorbent is very suitable for extracting lithium from salt lake brine with low lithium grade and high Mg2+/Li+ ratios.It has the advantages of no dissolution loss,high stability,which is the only adsorbent that has been put into industrial production.The homemade spherical aluminum-based lithium adsorbent GLDH was applied to lithium extraction in fixed bed.The effects of adsorption temperature,feed flow rate,initial Li+ concentration and bed height on the adsorption breakthrough curves of GLDH during lithium separation from brine in fixed bed were systematically studied.The results showed that increasing temperature and bed height as well as decreasing initial concentration and flow rate led to longer breakthrough time and higher breakthrough adsorption capacity.Five empirical models,including BDST,Clark,Thomas,Y-N and M-D-R models,were used to fit the lithium adsorption breakthrough curves.It was determined that the M-D-R model could accurately describe the lithium adsorption process in the fixed bed.

参考文献

1 Survey U.S.Geological. Mineral commodity summaries 2022[R].Reston,VA:U.S.Geological Survey, 2022.
2 马珍. 盐湖锂资源高效分离提取技术研究进展[J].无机盐工业, 2022, 54(10):22-29.
2 MA Zhen. Research progress on efficient separation and extraction technology of lithium resources in salt lakes[J].Inorganic Chemicals Industry, 2022, 54(10):22-29.
3 ALESSIA A, ALESSANDRO B, MARIA V G, et al. Challenges for sustainable lithium supply:A critical review[J].Journal of Clean-
3 Production er,2021, 300.Doi:10.1016/j.jclepro.2021.126954.
4 VIKSTR?M H, DAVIDSSON S, H??K M. Lithium availability and future production outlooks[J].Applied Energy, 2013, 110:252-266.
5 KESLER S E, GRUBER P W, MEDINA P A, et al. Global lithium resources:Relative importance of pegmatite,brine and other deposits[J].Ore Geology Reviews, 2012, 48:55-69.
6 韩佳欢, 乜贞, 方朝合, 等. 中国锂资源供需现状分析[J].无机盐工业, 2021, 53(12):61-66.
6 HAN Jiahuan, NIE Zhen, FANG Chaohe, et al. Analysis of existing circumstance of supply and demand on China's lithium resourc-es[J].Inorganic Chemicals Industry, 2021, 53(12):61-66.
7 SWAIN B. Recovery and recycling of lithium:A review[J].Separation and Purification Technology, 2017, 172:388-403.
8 刘东帆, 孙淑英, 于建国. 盐湖卤水提锂技术研究与发展[J].化工学报, 2018, 69(1):141-155.
8 LIU Dongfan, SUN Shuying, YU Jianguo. Research and development on technique of lithium recovery from salt lake brine[J].CIESC Journal, 2018, 69(1):141-155.
9 SUN Ying, WANG Qi, WANG Yunhao, et al. Recent advances in magnesium/lithium separation and lithium extraction technologies from salt lake brine[J].Separation and Purification Technology, 2021, 256.Doi:10.1016/j.seppur.2020.117807.
10 ZHONG Jing, LIN Sen, YU Jianguo. Li+ adsorption performance and mechanism using lithium/aluminum layered double hydroxides in low grade brines[J].Desalination, 2021, 505.Doi:10.1016/j.desal.2021.114983.
11 ISUPOV V P, KOTSUPALO N P, NEMUDRY A P, et al. Aluminium hydroxide as selective sorbent of lithium salts from brines and technical solutions[J].Studies in Surface Science and Catalysis, 1999, 120:621-652.
12 SUN Ying, YUN Rongping, ZANG Yufeng, et al. Highly efficient lithium recovery from pre-synthesized chlorine-ion-intercalated LiAl-layered double hydroxides via a mild solution chemistry process[J].Materials:Basel, Switzerland,2019, 12(12).Doi:10.3390/ma12121968.
13 LIU Xuheng, ZHONG Maoli, CHEN Xingyu, et al. Separating lithium and magnesium in brine by aluminum-based materials[J].Hydrometallurgy, 2018, 176:73-77.
14 RYABTSEV A, MENZHERES L T,TEN A. Sorption of lithium from brine onto granular LiCl·2Al(OH)3·mH2O sorbent under dynamic conditions[J].Russian Journal of Applied Chemistry, 2002, 75:1069-1074.
15 PARANTHAMAN M P, LI Ling, LUO Jiaqi, et al. Recovery of lithium from geothermal brine with lithium-aluminum layered double hydroxide chloride sorbents[J].Environmental Science & Technology, 2017, 51(22):13481-13486.
16 WILLIAMS G R, O'HARE D. A kinetic study of the intercalation of lithium salts into Al(OH)3 [J].The Journal of Physical Chemistry.B, 2006, 110(22):10619-10629.
17 WILLIAMS G R, O'HARE D. Towards understanding,control and application of layered double hydroxide chemistry[J].Che- mInform, 2006, 37(45).Doi:10.1002/chin.200645266.
18 吴志坚, 郭敏, 李权, 等. 氢氧化铝基锂吸附剂从卤水中吸附锂的机理[J].盐湖研究, 2018, 26(3):1-6.
18 WU Zhijian, GUO Min, LI Quan, et al. Adsorption mechanisms for the recovery of lithium from brines using aluminum hydroxide based adsorbent[J].Journal of Salt Lake Research, 2018, 26(3):1-6.
19 郭敏, 刘忠, 李权, 等. 铝基锂吸附剂从卤水中吸附提锂的研究及进展[J].青海科技, 2019, 26(3):16-20.
20 HU Fang, LIN Sen, LI Ping, et al. Quantitative effects of desorption intensity on structural stability and readsorption performance of lithium/aluminum layered double hydroxides in cyclic Li+ extraction from brines with ultrahigh Mg/Li ratio[J].Industrial & Engineering Chemistry Research, 2020, 59:13539-13548.
21 ZHONG Jing, LIN Sen, YU Jianguo. Lithium recovery from ultrahigh Mg2+/Li+ ratio brine using a novel granulated Li/Al-LDHs adsorbent[J].Separation and Purification Technology, 2021, 256.Doi:10.1016/j.seppur.2020.117780.
22 钟静, 陆旗玮, 林森, 等. 锂铝层状吸附剂超低品位卤水提锂冲洗和解吸过程[J].化工进展, 2021, 40(8):4638-4646.
22 ZHONG Jing, LU Qiwei, LIN Sen, et al. Washing and desorption procedures research on granulated lithium aluminum layered double hydroxides for lithium recovery from low-grade brine[J].Chemical Industry and Engineering Progress, 2021, 40(8):4638-4646.
23 张瑞, 钟静, 林森, 等. 盐湖铝系提锂吸附剂成型条件的影响研究[J].化工学报, 2021, 72(12):6291-6297.
23 ZHANG Rui, ZHONG Jing, LIN Sen, et al. Study on the influence of granulation conditions on Li/Al-LDHs for lithium recovery from low grade brine[J].CIESC Journal, 2021, 72(12):6291-6297.
24 YAGUB M T, SEN T K, AFROZE S, et al. Fixed-bed dynamic column adsorption study of methylene blue(MB) onto pine cone[J].Desalination and Water Treatment, 2015, 55(4):1026-1039.
25 CLARK R M. Evaluating the cost and performance of field-scale granular activated carbon systems[J].Environmental Science & Technology, 1987, 21(6):573-580.
26 THOMAS H C. Heterogeneous ion exchange in a flowing syst-em[J].Journal of the American Chemical Society, 1944, 66(10):1664-1666.
27 RECEPO?LU Y K, KABAY N, IPEK I Y, et al. Packed bed column dynamic study for boron removal from geothermal brine by a chelating fiber and breakthrough curve analysis by using mathematical models[J].Desalination, 2018, 437:1-6.
28 YAN G, VIRARAGHAVAN T. Heavy metal removal in a biosorption column by immobilized M.rouxii biomass[J].Bioresource Technology, 2001, 78(3):243-249.
29 YAN Guangyu, VIRARAGHAVAN T, CHEN Min. A new model for heavy metal removal in a biosorption column[J].Adsorption Science & Technology, 2001, 19(1):25-43.
30 高灿, 郭探, 刘海宁, 等. 碱金属离子在树脂上的动态吸附行为[J].无机盐工业, 2015, 47(2):16-20.
30 GAO Can, GUO Tan, LIU Haining, et al. Dynamic adsorption of mixed alkali metal ions onto resins[J].Inorganic Chemicals Industry, 2015, 47(2):16-20.
31 吴赵敏, 杨林, 王辛龙, 等. 动态离子交换法处理电子行业蚀刻含铝废酸工艺研究[J].无机盐工业, 2021, 53(2):61-65, 70.
31 WU Zhaomin, YANG Lin, WANG Xinlong, et al. Study on process of dynamic ion-exchange for etching waste acid containing aluminum in electronic industry[J].Inorganic Chemicals Industry, 2021, 53(2):61-65, 70.
32 周为峰, 池勇志, 李恺雄, 等. 离子交换法脱除湿法冶金工业MVR冷凝废水中盐类的研究[J].无机盐工业, 2022, 54(4):152-158.
32 ZHOU Weifeng, CHI Yongzhi, LI Kaixiong, et al. Study on removal of salts from MVR condensate wastewater in the hydrometallurgical industry by ion exchange method[J].Inorganic Chemicals Industry, 2022, 54(4):152-158.
33 WAN NGAH W S, TEONG L C, TOH R H, et al. Utilization of chitosan-zeolite composite in the removal of Cu(Ⅱ) from aqueous solution:Adsorption,desorption and fixed bed column studies[J].Chemical Engineering Journal, 2012, 209:46-53.
34 CHU K H. Breakthrough curve analysis by simplistic models of fixed bed adsorption:In defense of the century-old bohart-adams model[J].Chemical Engineering Journal, 2020, 380.Doi:10.1016/j.cej.2019.122513.
35 HU Qili, XIE Yanhua, ZHANG Zhenya. Modification of breakthrough models in a continuous-flow fixed-bed column:Mathematical characteristics of breakthrough curves and rate profil-es[J].Separation and Purification Technology, 2020, 238.Doi:10.1016/j.seppur.2019.116399.
文章导航

/