退役锂离子电池湿法回收生命周期和经济评价
收稿日期: 2022-10-12
网络出版日期: 2023-01-17
基金资助
上海市自然科学基金(22ZR141580020);上海市青年科技英才扬帆计划项目(21YF1409000)
Life cycle and economic assessment of recycling spent lithium-ion batteries with hydrometallurgical process
Received date: 2022-10-12
Online published: 2023-01-17
锂离子电池(LIBs)具有能量密度高、输出功率大等优点被广泛应用,随之产生了大量退役LIBs。近年来,退役LIBs回收再利用逐渐受到了人们的关注,但目前回收体系尚不完善,存在发展动力和科学技术等方面的问题。从生命周期评价(LCA)和经济性评价两方面对典型的盐酸、硫酸-双氧水和电化学浸出3种回收方法进行分析讨论。使用SimaPro 9软件对回收过程进行生命周期评价,得到全球变暖潜能值、非生物资源耗竭潜能值和资源消耗量等,结果表明酸用量和能量消耗为主要的环境影响因素;并对回收再利用过程(包括预处理、浸出、再制备)进行经济性分析,得到相应的收益情况。结果表明,目前回收成本较高,整体呈现亏损状态。基于此,提出了相应的优化建议。
周诗雨 , 何婷 , 付彤彤 , 郭子睿 , 顾帅 , 于建国 . 退役锂离子电池湿法回收生命周期和经济评价[J]. 无机盐工业, 2023 , 55(1) : 26 -32 . DOI: 10.19964/j.issn.1006-4990.2022-0603
Lithium-ion batteries(LIBs) have been widely used because of high energy density and high output power,resulting in a large number of spent LIBs.In recent years,the recycling and utilization of spent LIBs has attracted the attention of researchers.However,the current recovery system is not perfect,due to problems in development momentum,science and technology.The three typical recovery processes,i.e.,HCl,H2SO4-H2O2 and electrochemical leaching,with life cycle assessment(LCA) and economic evaluation were compared.SimaPro 9 software was used to conduct LCA on the recovery process,and obtain global warming potential value,non biological resource depletion potential value,resource consumption,etc.The results showed that acid dosage and energy consumption were the main factors determining environmental burden.Economic analysis of three recovery processes including pretreatment,leaching,and regeneration was carried to obtain the corresponding profits.The analysis found that the cost of the current recycling process was high,resulting in the deficit of the whole recycling process.Therefore,corresponding optimization suggestions were put forward.
1 | KIM T, SONG Wentao, SON D Y, et al. Lithium-ion batteries:Outlook on present,future,and hybridized technologies[J].Journal of Materials Chemistry A, 2019, 7(7):2942-2964. |
2 | GU Fu, GUO Jianfeng, YAO Xing, et al. An investigation of the current status of recycling spent lithium-ion batteries from consumer electronics in China[J].Journal of Cleaner Production, 2017, 161:765-780. |
3 | YAN Zhiliang, HU Qiyang, YAN Guochun, et al. Co3O4/Co nano-particles enclosed graphitic carbon as anode material for high performance Li-ion batteries[J].Chemical Engineering Journal, 2017, 321:495-501. |
4 | LI Guangzhe, HUANG Bin, PAN Zhefei, et al. Advances in three-dimensional graphene-based materials:Configurations,preparation and application in secondary metal(Li,Na,K,Mg,Al)-ion batteries[J].Energy & Environmental Science, 2019, 12(7):2030-2053. |
5 | LIU Dandan, SU Zhi, WANG Lei. Pyrometallurgically regenerated LiMn2O4 cathode scrap material and its electrochemical properti-es[J].Ceramics International, 2021, 47(1):42-47. |
6 | XIAO Hougui, JI Guanjun, YE Long, et al. Efficient regeneration and reutilization of degraded graphite as advanced anode for lithium-ion batteries[J].Journal of Alloys and Compounds, 2021, 888.Doi:10.1016/j.jallcom.2021.161593. |
7 | MAKUZA B, TIAN Qinghua, GUO Xueyi, et al. Pyrometallurgical options for recycling spent lithium-ion batteries:A comprehensive review[J].Journal of Power Sources, 2021, 491.Doi:10.1016/j.jpowsour.2021.229622. |
8 | YANG Yue, HUANG Guoyong, XU Shengming, et al. Thermal treatment process for the recovery of valuable metals from spent lithium-ion batteries[J].Hydrometallurgy, 2016, 165:390-396. |
9 | HUANG Bin, PAN Zhefei, SU Xiangyu, et al. Recycling of lithium-ion batteries:Recent advances and perspectives[J].Journal of Power Sources, 2018, 399:274-286. |
10 | RAJ T, CHANDRASEKHAR K, KUMAR A N, et al. Recycling of cathode material from spent lithium-ion batteries:Challenges and future perspectives[J].Journal of Hazardous Materials, 2022, 429.Doi:10.1016/j.jhazmat.2022.128312. |
11 | HARPER G, SOMMERVILLE R, KENDRICK E, et al. Recycling lithium-ion batteries from electric vehicles[J].Nature, 2019, 575(7781):75-86. |
12 | MROZIK W, RAJAEIFAR M A, HEIDRICH O, et al. Environmental impacts,pollution sources and pathways of spent lithium-ion batteries[J].Energy & Environmental Science, 2021, 14(12):6099-6121. |
13 | SINGH U K, KUMAR B. Pathways of heavy metals contamination and associated human health risk in Ajay River Basin,India[J].Chemosphere, 2017, 174:183-199. |
14 | SHI Yang, CHEN Gen, CHEN Zheng. Effective regeneration of LiCoO2 from spent lithium-ion batteries:A direct approach towards high-performance active particles[J].Green Chemistry, 2018, 20(4):851-862. |
15 | 李惜. 健全废旧锂离子电池回收利用支撑体系[N].中国矿业报, 2022-03-12(4). |
16 | SHIBAZAKI K, AZUMA D, WATANABE M, et al. Hydrothermal organic acid leaching of positive electrode material of lithium-ion batteries[J].Kagaku Kogaku Ronbunshu, 2020, 46(5):167-175. |
17 | LI Jishen, YANG Xiyun, YIN Zhoulan. Recovery of manganese from sulfuric acid leaching liquor of spent lithium-ion batteries and synthesis of lithium ion-sieve[J].Journal of Environmental Chemical Engineering, 2018, 6(5):6407-6413. |
18 | CHEN Mengyuan, MA Xiaotu, CHEN Bin, et al. Recycling end-of-life electric vehicle lithium-ion batteries[J].Joule, 2019, 3(11):2622-2646. |
19 | PETERS J F, BAUMANN M, ZIMMERMANN B, et al. The environmental impact of Li-ion batteries and the role of key parame-ters-A review[J].Renewable and Sustainable Energy Reviews, 2017, 67:491-506. |
20 | LYBBERT M, GHAEMI Z, BALAJI A K, et al. Integrating life cycle assessment and electrochemical modeling to study the effects of cell design and operating conditions on the environmental impacts of lithium-ion batteries[J].Renewable and Sustainable Energy Reviews, 2021, 144.Doi:10.1016/j.rser.2021.111004. |
21 | REY I, VALLEJO C, SANTIAGO G, et al. Environmental impacts of graphite recycling from spent lithium-ion batteries based on life cycle assessment[J].ACS Sustainable Chemistry & Engineering, 2021, 9(43):14488-14501. |
22 | JIANG Songyan, HUA Hui, ZHANG Ling, et al. Environmental impacts of hydrometallurgical recycling and reusing for manufacturing of lithium-ion traction batteries in China[J].Science of the Total Environment, 2022, 811.Doi:10.1016/j.scitotenv.2021.152224. |
23 | GAINES L. Lithium-ion battery recycling processes:Research towards a sustainable course[J].Sustainable Materials and Technologies, 2018, 17.Doi:10.1016/j.susmat.2018.e00068. |
24 | HE Lipo, SUN Shuying, SONG Xingfu, et al. Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning[J].Waste Management, 2015, 46:523-528. |
25 | GAO Wenfang, ZHANG Xihua, ZHENG Xiaohong, et al. Lithium carbonate recovery from cathode scrap of spent lithium-ion battery:A closed-loop process[J].Environmental Science & Technology, 2017, 51(3):1662-1669. |
26 | LI Jia, WANG Guangxu, XU Zhenming. Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt,lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries[J].Journal of Hazardous Materials, 2016, 302:97-104. |
27 | DUAN Xiaowei, ZHU Wenkun, RUAN Zhongkui, et al. Recycling of lithium batteries-A review[J].Energies, 2022, 15(5).Doi:10.3390/en15051611. |
28 | YAO Yonglin, ZHU Meiying, ZHAO Zhuo, et al. Hydrometallurgical processes for recycling spent lithium-ion batteries:A critical review[J].ACS Sustainable Chemistry & Engineering, 2018, 6(11):13611-13627. |
29 | Jung J C Y, Chow N, Warkentin D D, et al. Experimental study on recycling of spent lithium-ion battery cathode materials[J].Journal of the Electrochemical Society, 2020, 167(16).Doi:10.1149/1945-7111/abd600. |
30 | LI Jinhui, SHI Pixing, WANG Zefeng, et al. A combined recovery process of metals in spent lithium-ion batteries[J].Chemosphere, 2009, 77(8):1132-1136. |
31 | SHIN S M, KIM N H, SOHN J S, et al. Development of a metal recovery process from Li-ion battery wastes[J].Hydrometallurgy, 2005, 79(3/4):172-181. |
32 | MENG Qi, ZHANG Yingjie, DONG Peng. Use of electrochemical cathode-reduction method for leaching of cobalt from spent lithi-um-ion batteries[J].Journal of Cleaner Production, 2018, 180:64-70. |
33 | 杨海波, 梁辉, 黄继承, 等. 从废旧锂离子电池中回收制备LiCoO2的结构与性能研究[J].稀有金属材料与工程, 2006, 35(5):836-840. |
33 | YANG Haibo, LIANG Hui, HUANG Jicheng, et al. Research on structure and properties of LiCoO2 prepared from spent lithium ion batteries[J].Rare Metal Materials and Engineering, 2006, 35(5):836-840. |
34 | 气体网. 多因素提振 2021年中国液氮价格震荡上扬[EB/OL].(2022-01-17)[2022-10-03]. |
35 | 北极星储能网. 7月12日储能材料价格:钴酸锂价格下跌 5 000元/吨![EB/OL].(2022-07-12)[2022-10-03]. |
36 | 陈雨康. 中国硫酸工业协会:预计硫酸价格将高位运行[EB/OL].(2022-07-20)[2022-10-03]. |
37 | 吴小龙, 王晨麟, 陈曦, 等. 废旧锂离子电池市场规模及回收利用技术[J].环境科学与技术, 2020, 43(S2):179-183. |
37 | WU Xiaolong, WANG Chenlin, CHEN Xi, et al. Market scale and recycling technology of waste lithium-ion batteries[J].Environmental Science & Technology, 2020, 43(S2):179-183. |
38 | YANG Jingbo, FAN Ersha, LIN Jiao, et al. Recovery and reuse of anode graphite from spent lithium-ion batteries via citric acid leaching[J].ACS Applied Energy Materials, 2021, 4(6):6261-6268. |
39 | NATARAJAN S, ARAVINDAN V. An urgent call to spent LIB recycling:Whys and wherefores for graphite recovery[J].Advanced Energy Materials, 2020, 10(37).Doi:10.1002/aenm.202002238. |
40 | FAN Ersha, LI Li, WANG Zhenpo, et al. Sustainable recycling technology for Li-ion batteries and beyond:Challenges and future prospects[J].Chemical Reviews, 2020, 120(14):7020-7063. |
41 | 刘东旭, 蔡牧涯, 陈翔, 等. 废旧锂离子电池负极材料再生和利用进展[J].化学工业与工程, 2021, 38(6):2-12. |
41 | LIU Dongxu, CAI Muya, CHEN Xiang, et al. Progress on regeneration and reutilization of anode materials from spent lithium-ion batteries[J].Chemical Industry and Engineering, 2021, 38(6):2-12. |
/
〈 |
|
〉 |