木耳碳基硫化钴复合材料的制备及电化学性能研究
收稿日期: 2022-03-16
网络出版日期: 2022-12-19
基金资助
贵州省高层次人才培养计划—“百”层次人才(黔科合平台人才[2016]5658)
Study on preparation and electrochemical properties of agaric carbon-based cobalt sulfide composites
Received date: 2022-03-16
Online published: 2022-12-19
以木耳制备的均匀溶液为碳源,加入ZIF-67前驱体,通过水热合成和高温煅烧制备氮硫共掺杂的木耳碳与硫化钴多孔片层复合材料(CoS/NSAC)。实验结果表明,该材料具有大的比表面积和高导电性,电化学性能良好。CoS/NSAC在电流密度为0.5 A/g时比容量达到484.8 F/g,在20 A/g高电流密度下循环5 000次容量保持率为78.8%。用该材料组装的非对称超级电容器具有优异的电化学性能,在0.6 A/g电流密度下比容量为154 F/g。当功率密度为362.3 W/kg时,能量密度为7.4 W?h/kg,经过1 800次循环容量保持率为81.95%。
易金亮 , 杨敏 , 宋方祥 , 陈前林 . 木耳碳基硫化钴复合材料的制备及电化学性能研究[J]. 无机盐工业, 2022 , 54(12) : 60 -67 . DOI: 10.19964/j.issn.1006-4990.2022-0121
The homogeneous solution prepared from agaric was used as carbon sources,and porous sheet composites of N,S co-doped agaric carbon and CoS(CoS/NSAC) were prepared by hydrothermal synthesis and high temperature calcination after adding ZIF-67 precursor.The results showed that the materials had large specific surface area and high electrical conductivity with good electrochemical properties.The CoS/NSAC achieved a specific capacity of 484.8 F/gat current density of 0.5 A/g.Its capacity retention rate was 78.8% after 5 000 cycles at a high current density of 20 A/g.The asymmetric supercapacitor assembled with this materials had excellent electrochemical performance with a specific capacity of 154 F/g at current density of 0.6 A/g.When the power density was 362.3 W/kg,the energy density was 7.4 W·h/kg and the capacity retention rate was 81.95% after 1 800 cycles.
Key words: biomass agaric; cobalt sulfide; N,S co-doped; composites; supercapacitor
| 1 | LUO Lu, ZHOU Yalan, YAN Wen, et al. Construction of advanced zeolitic imidazolate framework derived cobalt sulfide/MXene composites as high-performance electrodes for supercapacitors[J]. Journal of Colloid and Interface Science, 2022, 615:282-292. |
| 2 | CHAI Shanshan, ZHANG Lun, ZHANG Weibin, et al. Acid etching halloysite loaded cobalt boride material for supercapacitor electrode application[J]. Applied Clay Science, 2022, 218.Doi:10.1016/j.clay.2022.106426 . |
| 3 | 李倩男, 王桂玲, 张卫民, 等. 多孔球状Mn3O4的制备及电容特性研究[J]. 硅酸盐通报, 2019, 38(7):2157-2161. |
| 3 | LI Qiannan, WANG Guiling, ZHANG Weimin, et al. Preparation of porous spherical Mn3O4 and its capacitance characteristics[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(7):2157-2161. |
| 4 | JI Zhenyuan, CHEN Lizhi, LIU Kai, et al. Nickel sulfide and cobalt sulfide nanoparticles deposited on ultrathin carbon two-dimensional nanosheets for hybrid supercapacitors[J]. Applied Surface Science, 2022, 574.Doi:10.1016/j.apsusc.2021.151727 . |
| 5 | LI Xuan, YAN Wenjun, GUO Shoujing, et al. One-step electrochemical controllable preparation of nickel cobalt sulfide nano-sheets and its application in supercapacitors[J]. Electrochimica Acta, 2021, 387.Doi:10.1016/j.electacta.2021.138488 . |
| 6 | ZHAO Fenglin, XIE Dong, SONG Xinrui, et al. Construction of hydrangea-like nickel cobalt sulfide through efficient microwave-assisted approach for remarkable supercapacitors[J]. Applied Surface Science, 2021, 539.Doi:10.1016/j.apsusc.2020.148260 . |
| 7 | WANG Meixia, ZHANG Jing, FAN Huili, et al. ZIF-67 derived Co3O4/carbon aerogel composite for supercapacitor electrodes[J]. New Journal of Chemistry, 2019, 43(15):5666-5669. |
| 8 | RAPHAEL EZEIGWE E, DONG Li, WANG Jianyi, et al. MOF-deviated zinc-nickel-cobalt ZIF-67 electrode material for high-performance symmetrical coin-shaped supercapacitors[J]. Journal of Colloid and Interface Science, 2020, 574: 140-151. |
| 9 | 沈威, 王思楠, 梁雪梅, 等. 纳米MOFs及其衍生物在超级电容器中的研究进展[J]. 无机盐工业, 2021, 53(6):79-86. |
| 9 | SHEN Wei, WANG Sinan, LIANG Xuemei, et al. Research progress of nano MOFs and their derivatives for supercapacitors[J]. Inorganic Chemicals Industry, 2021, 53(6):79-86. |
| 10 | ZANG Yang, LUO Hui, ZHANG Hang, et al. Polypyrrole nanotube-interconnected NiCo-LDH nanocages derived by ZIF-67 for supercapacitors[J]. ACS Applied Energy Materials, 2021, 4(2):1189-1198. |
| 11 | JI Zhenyuan, LI Na, XIE Minghua, et al. High-performance hybrid supercapacitor realized by nitrogen-doped carbon dots modified cobalt sulfide and reduced graphene oxide[J]. Electrochimica Acta, 2020, 334.Doi:10.1016/j.electacta.2020.135632 . |
| 12 | SONG Fangxiang, CHEN Qianlin, LI Yan, et al. High energy density supercapacitors based on porous mSiO2@Ni3S2/NiS2 promoted with boron nitride and carbon[J]. Chemical Engineering Journal, 2020, 390.Doi:10.1016/j.cej.2020.124561 . |
| 13 | ZHAO Feng, SONG Fangxiang, CHEN Qianlin. Nitrogen/sulfur codoped FCC-slurry-based porous carbon materials in symmetric supercapacitors[J]. Applied Surface Science, 2021, 561.Doi:10.1016/j.apsusc.2021.150063 . |
| 14 | JIAN Xian, LIU Shiyu, GAO Yuqi, et al. Facile synthesis of three-dimensional sandwiched MnO2@GCs@MnO2 hybrid nanostructured electrode for electrochemical capacitors[J]. ACS Applied Materials & Interfaces, 2017, 9(22):18872-18882. |
| 15 | YU Ji, LUO Jindi, ZHANG Hai, et al. Two for one:A biomass strategy for simultaneous synthesis of MnO2 microcubes and porous carbon microcubes for high performance asymmetric supercapacitors[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(16):6333-6342. |
| 16 | WAN Liu, XIAO Rui, LIU Jiaxing, et al. A novel strategy to prepare N,S-codoped porous carbons derived from barley with high surface area for supercapacitors[J]. Applied Surface Science, 2020, 518.Doi:10.1016/j.apsusc.2020.146265 . |
| 17 | CHEN Tingting, MA Yifan, GUO Qiubo, et al. A facile sol-gel route to prepare functional graphene nanosheets anchored with homogeneous cobalt sulfide nanoparticles as superb sodium-ion anodes[J]. Journal of Materials Chemistry A, 2017, 5(7):3179-3185. |
| 18 | GUO Chunli, ZHANG Yuyu, YIN Minshuai, et al. Co3O4@Co3S4 core-shell neuroid network for high cycle-stability hybrid-supercapacitors[J]. Journal of Power Sources, 2021, 485.Doi:10.1016/j.jpowsour.2020.229315 . |
| 19 | YIN Bo, CAO Xinxin, PAN Anqiang, et al. Encapsulation of CoS x nanocrystals into N/S co-doped honeycomb-like 3D porous carbon for high-performance lithium storage[J]. Advanced Science, 2018, 5(9).Doi:10.1002/advs.201800829 . |
| 20 | 孙美岩, 苏伟丰, 张珅珅, 等. 碳布负载氮掺杂石墨烯及其电化学性能研究[J]. 硅酸盐通报, 2020, 39(3):962-968. |
| 20 | SUN Meiyan, SU Weifeng, ZHANG Shenshen, et al. Nitrogen-doping graphene loaded on carbon cloth and its electrochemical properties[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(3):962-968. |
| 21 | FANG Menglu, WANG Zhao, CHEN Xiaojun, et al. Sponge-like reduced graphene oxide/silicon/carbon nanotube composites for lithium ion batteries[J]. Applied Surface Science, 2018, 436: 345-353. |
| 22 | LUO Jing, MA Bingjie, PENG Jiao, et al. Modified chestnut-like structure silicon carbon composite as anode material for lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(12):10415-10424. |
| 23 | SONG Fangxiang, AO Xianquan, CHEN Qianlin. Effect of heteroatom doping on the charge storage and operating voltage window of nickel-based sulfide composite electrodes in alkaline electrolytes[J]. Chemical Engineering Journal, 2022, 427.Doi:10.1016/j.cej.2021.130885 . |
| 24 | ASHOK KUMAR K, PANDURANGAN A, ARUMUGAM S, et al. Effect of Bi-functional hierarchical flower-like CoS nanostructure on its interfacial charge transport kinetics,magnetic and electrochemical behaviors for supercapacitor and DSSC applications[J]. Scientific Reports, 2019, 9(1).Doi:10.1038/s41598-018-37463-0 . |
| 25 | XING Jiachao, ZHU Yanli, ZHOU Qingwen, et al. Fabrication and shape evolution of CoS2 octahedrons for application in supercapacitors[J]. Electrochimica Acta, 2014, 136: 550-556. |
| 26 | XIE Yiming, YIN Jie, ZHENG Juanjuan, et al. Synergistic cobalt sulfide/eggshell membrane carbon electrode[J]. ACS Applied Materials & Interfaces, 2019, 11(35):32244-32250. |
| 27 | TANG Jianhua, SHEN Jianfeng, LI Na, et al. A free template strategy for the synthesis of CoS2-reduced graphene oxide nanocomposite with enhanced electrode performance for supercapacitors[J]. Ceramics International, 2014, 40(10):15411-15419. |
| 28 | MAO Xiling, HE Xin, YANG Wenyao, et al. Hierarchical holey Co9S8@S-rGO hybrid electrodes for high-performance asymmetric supercapacitors[J]. Electrochimica Acta, 2019, 328.Doi:10.1016/j.electacta.2019.135078 . |
| 29 | 赵悦, 张海燕, 陈建飞, 等. 三维碗状结构CoS2/C复合材料的制备及其在超级电容器中的应用[J]. 材料研究与应用, 2020, 14(1):19-25, 30. |
| 29 | ZHAO Yue, ZHANG Haiyan, CHEN Jianfei, et al. Preparation of 3D bowl-shaped CoS2/C composite material and its application in supercapacitors[J]. Materials Research and Application, 2020, 14(1):19-25, 30. |
| 30 | CHEN Zhimin, WANG Xiaofeng, DING Zhiyao, et al. Biomass-based hierarchical porous carbon for supercapacitors:Effect of aqueous and organic electrolytes on the electrochemical performance[J]. ChemSusChem, 2019, 12(23):5099-5110. |
/
| 〈 |
|
〉 |