无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
综述与专论

干法后处理废盐中活泼裂片元素的净化工艺研究进展

  • 伍思达 ,
  • 林如山 ,
  • 张磊 ,
  • 贾艳虹
展开
  • 中国原子能科学研究院,放射化学研究所,北京 102413
伍思达(1997— ),男,硕士研究生,研究方向为核燃料循环;E-mail: wusida921@qq.com

收稿日期: 2021-09-23

  网络出版日期: 2022-04-18

Research progress on purification process for active crack elements in waste salt by dry post-treatment

  • Sida WU ,
  • Rushan LIN ,
  • Lei ZHANG ,
  • Yanhong JIA
Expand
  • China Institute of Atomic Energy,Institute of Radiochemistry,Beijing 102413,China

Received date: 2021-09-23

  Online published: 2022-04-18

摘要

随着快堆研究的快速发展,干法后处理工艺流程也逐渐成为了研究重点,熔盐电解干法后处理是未来先进核燃料循环系统的核心环节和关键技术。氯化锂-氯化钾共晶盐是干法后处理工艺中最常用的熔盐体系。为了提取乏燃料中的锕系、镧系和铯、锶元素,需要对熔盐进行长时间的电解。在锕系分离提取过程中,镧系和铯、锶等活泼裂片元素在熔盐中不断积累,不仅会改变熔盐体系的理化性质,还将影响后续锕系产品的净化效果。为实现溶剂盐复用,使放射性废物最小化,需定期对废熔盐中的镧系和铯、锶等活泼裂片元素进行净化处理。对干法后处理氯化锂-氯化钾废熔盐中镧系和铯、锶等活泼裂片元素采取的净化工艺,包括熔盐萃取法、熔盐电解法、沉淀法、区域精炼法等工艺的原理、特点和研发进展进行了综述和比较分析,讨论了上述工艺中为实现溶剂盐复用、减少放射性废物产生对废熔盐中的镧系和铯、锶等活泼裂片元素的净化效果。指出了中国废盐净化将围绕实现稀土资源利用最大化、保护环境、最大程度上减少废物的排放开展相关方向的研究。

本文引用格式

伍思达 , 林如山 , 张磊 , 贾艳虹 . 干法后处理废盐中活泼裂片元素的净化工艺研究进展[J]. 无机盐工业, 2022 , 54(4) : 81 -87 . DOI: 10.19964/j.issn.1006-4990.2021-0577

Abstract

With the rapid development of fast reactor research,dry post-treatment process has gradually become the focus of research.Molten salt electrolysis dry post-treatment is the core link and key technology of advanced nuclear fuel cycle system in the future.LiCl-KCl eutectic salt is the most commonly used molten salt system in the dry post-processing process.In order to extract actinides,lanthanides and strontium cesium elements from spent fuel,it is necessary to conduct long time electrolysis in the molten salt.In the process of separation and extraction of actinides,active fragment elements such as lanthanides,strontium and cesium accumulate in molten salt,which not only changes the physical and chemical properties of molten salt system,but also affects the purification effect of subsequent actinides products.In order to realize the reuse of solvent salt and minimize radioactive waste,it is necessary to regularly purify the lanthanide,cesium,strontium and other active fission elements in the waste molten salt.The principles,characteristics and development progress of the purification processes of lanthanide,strontium and cesium in LiCl-KCl waste molten salt by dry post-treatment were reviewed and compared,including molten salt extraction,molten salt electrolysis,precipitation and regional refining.The purification effects of lanthanide and active fragment elements such as strontium and cesium in waste molten salt were discussed in order to reuse solvent salt and reduce the generation of radioactive waste in the above process.It was pointed out that research of China′s waste salt purification will focus on maximizing the utilization of rare earth resources,protecting the environment and reducing waste emission to the greatest extent.

参考文献

[1] 林如山, 何辉, 唐洪彬, 等. 我国乏燃料干法后处理技术研究现状与发展[J]. 原子能科学技术, 2020(S1):115-125.
[2] 王有群, 何辉, 林如山, 等. 无机氯化物熔盐在乏燃料干法后处理中的应用进展[J]. 无机盐工业, 2016, 48(8):1-5.
[3] 叶国安, 郑卫芳, 何辉, 等. 我国核燃料后处理技术现状和发展[J]. 原子能科学技术, 2020, 54(z1):75-83.
[4] 刘海军, 陈晓丽. 国内外乏燃料后处理技术研究现状[J]. 节能技术, 2021, 39(4):358-362.
[5] CHOI J H, LEE K R, KANG H W, et al. Reactive-crystallization method for purification of LiCl salt waste[J]. Journal of Radioanalytical and Nuclear Chemistry, 2020, 325(2):485-492.
[6] INOUE T, KOCH L. Development of pyroprocessing and its future direction[J]. Nuclear Engineering and Technology, 2008, 40(3):183-190.
[7] 梁红彦. 乏燃料电冶金废熔盐中放射性核素的脱除与固化[D]. 南宁:广西大学, 2015.
[8] 孙鹏院. 熔盐/液态金属(Bi-Li)还原萃取稀土Ce和Sm[D]. 哈尔滨:哈尔滨工程大学, 2015.
[9] EUN H C, CHOI J H, CHO I H, et al. Purification of LiCl-KCl eutectic waste salt containing rare earth chlorides delivered from the pyrochemical process of used nuclear fuel using a reactive distillation process[J]. Journal of Radioanalytical and Nuclear Chemistry, 2016, 30:1419-1425.
[10] 贾艳虹, 何辉, 林如山, 等. 用于熔盐体系的氮化硼隔膜Ag/AgCl参比电极性能[J]. 无机盐工业, 2015, 47(5):67-71.
[11] MURAKAMI T, SAKAMURA Y, UOZUMI K, et al. Rare earth silicide formation on Si electrode in LiCl-KCl melt to establish a novel used salt treatment process[J]. ECS Transactions, 2020, 98(10):33-46.
[12] 张凯, 肖益群, 林如山, 等. 俄罗斯氧化物乏燃料电沉积流程研究进展[J]. 核化学与放射化学, 2019, 41(3):233-241.
[13] SOUČEK P, MALMBECK R, MENDES E, et al. Exhaustive electrolysis for recovery of actinides from molten LiCl-KCl using solid aluminium cathodes[J]. Journal of Radioanalytical and Nuclear Chemistry, 2010, 286:823-828.
[14] SONG K C, LEE H, HUR J M, et al. Status of pyroprocessing technology development in Korea[J]. Nuclear Engineering and Technology, 2010, 42(2):131-144.
[15] 聂春晨. 稀土金属提纯现状及发展趋势[J]. 化工设计通讯, 2019, 45(5):67-68.
[16] IVANOV A B, BYZOVA E D, VOLKOVICH V A, et al. Application of phosphate precipitation for removing strontium and barium from alkali chloride based melts[J]. ECS Transactions, 2020, 98(10):283-294.
[17] CHO Y Z, PARK G H, YANG H C, et al. Minimization of eutectic salt waste from pyroprocessing by oxidative precipitation of lanthanides[J]. Journal of Nuclear Science and Technology, 2009, 46(10):1004-1011.
[18] LEE T K, CHO Y Z, EUN H C, et al. Study on the phosphate reaction characteristics of lanthanide chlorides in molten salt with operating conditions[J]. Journal of Nuclear Science and Technology, 2013, 50(7):742-750.
[19] CHO Y Z, LEE T K, EUN H C, et al. Purification of used eutectic (LiCl-KCl) salt electrolyte from pyroprocessing[J]. Journal of Nuclear Materials, 2013, 437(1/2/3):47-54.
[20] RILEY B J. Electrochemical salt wasteform development:A review of salt treatment and immobilization options[J]. Industrial and Engineering Chemistry Research, 2020, 59(21):9760-9774.
[21] CHOI J H, EUN H C, LEE K R, et al. Fabrication of rare earth calcium phosphate glass waste forms for the immobilization of rare earth phosphates generated from pyrochemical process[J]. Journal of Non-Crystalline Solids, 2016, 434:79-84.
[22] KIM E H, PARK G I, CHO Y Z, et al. A new approach to minimize pyroprocessing waste salts through a series of fission product removal process[J]. Nuclear Technology, 2008, 162(2):208-218.
[23] LAN Y P, SOHN H Y, MURALI A, et al. The formation and growth of CeOCl crystals in a molten KCl-LiCl flux[J]. Applied Physics A, 2018, 124(10).Doi: 10.1007/s00339-018-2122-3.
[24] LIU Y, LIU K, LUO L, et al. Direct separation of uranium from lanthanides (La,Nd,Ce,Sm) in oxide mixture in LiCl-KCl eutectic melt[J]. Electrochimica Acta, 2018, 275:100-109.
[25] LEE H S, GYU-HWAN O H, LEE Y S, et al. Concentrations of CsCl and SrCl2 from a simulated LiCl salt waste generated by pyroprocessing by using Czochralski method[J]. Journal of Nuclear Science and Technology, 2009, 46(4):392-397.
[26] KIM I S, CHUNG D Y, PARK M S, et al. Evaporation of CsCl,BaCl2, and SrCl2 from the LiCl-Li2O molten salt of the electrolytic reduction process[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 303(1):223-227.
[27] YOO T S, FRANK S M, SIMPSON M F, et al. Salt-zeolite ion-exchange equilibrium studies for a complete set of fission products in molten LiCl-KCl[J]. Nuclear Technology:A journal of the American Nuclear Society, 2010, 171(3):306-315.
[28] SACHDEV P, SIMPSON M F, FRANK S M, et al. Selective separation of Cs and Sr from LiCl-based salt for electrochemical processing of oxide spent nuclear fuel[J]. Separation Science and Technology, 2008, 43(9/10):2709-2721.
[29] LEXA D, JOHNSON I. Occlusion and ion exchange in the molten (lithium chloride-potassium chloride-alkali metal chloride) salt+zeolite 4A system with alkali metal chlorides of sodium,rubidium,and cesium[J]. Metallurgical and Materials Transactions B, 2001, 32(3):429-435.
[30] LEXA D. Occlusion and ion exchange in the molten(lithium chloride+potassium chloride+alkaline-earth chloride) salt+zeolite 4A system with alkaline-earth chlorides of calcium and strontium and in the molten(lithium chloride+potassium chloride+actinide chloride) salt+zeolite 4A system with the actinide chloride of uranium[J]. Metallurgical and Materials Transactions B, 2003, 34(2):201-208.
[31] SHALTRY M, PHONGIKAROON S, SIMPSON M F. Ion exchange kinetics of fission products between molten salt and zeolite-A[J]. Microporous and Mesoporous Materials, 2012, 152:185-189.
[32] CHO Y Z, LEE T K, CHOI J H, et al. Study on LiCl waste salt treatment process by layer melt crystallization[C]// Salt Lake City.International nuclear fuel cycle conference,GLOBAL 2013:Nuclear energy at a crossroads, 2013:297-299.
[33] POGLYAD S S, ANKUDINOVA N S, NECHAEV P I, et al. The cesium precipitation from the spent electrolyte LiCl-KCl composition simulator[J]. Journal of Physics:Conference Series, 2018, 1133(1):12-22.
[34] CHO Y Z, AHN B G, EUN H C, et al. Melt crystallization process treatment of LiCl salt waste generated from electrolytic reduction process of spent oxide fuel[J]. Energy Procedia, 2011, 7(1):525-528.
[35] VERSEY J R, PHONGIKAROON S, SIMPSON M F. Separation of CsCl from LiCl-CsCl molten salt by cold finger melt crystallization[J]. Nuclear Engineering and Technology, 2014, 46(3):395-406.
[36] CHOI J H, CHO Y Z, LEE T K, et al. Inclusion behavior of Cs,Sr, and Ba impurities in LiCl crystal formed by layer-melt crystallization:Combined first-principles calculation and experimental study[J]. Journal of Crystal Growth, 2013, 371:84-89.
[37] CHOI J H, LEE T K, LEE K R, et al. Melt-crystallization monitoring system for the purification of 10 kg-scale LiCl salt waste[J]. Nuclear Engineering and Design, 2018, 326:1-6.
[38] 任永胜, 李军, 马睿, 等. 区域熔融法提纯工业黄磷的数学模型与实验研究[J]. 高校化学工程学报, 2009(6):933-938.
[39] GHOSH K, MANI V N, DHAR S. Numerical study and experimental investigation of zone refining in ultra-high purification of gallium and its use in the growth of GaAs epitaxial layers[J]. Journal of Crystal Growth, 2009, 311(6):1521-1528.
[40] CHO Y Z, LEE T K, CHOI J H, et al. Eutectic(LiCl-KCl) waste salt treatment by sequencial separation process[J]. Nuclear Engineering and Technology, 2013, 45(5):675-682.
[41] WILLIAMS A N, PACK M, PHONGIKAROON S. Separation of SrCl2 and CsCl from ternary SrCl2-LiCl-KCl and quaternary SrCl2-CsCl-LiCl-KCl molten salts via melt crystallization[J]. Transactions of the American Nuclear Society, 2014, 111(1):431-433.
[42] 周骏宏, 李军, 任永胜. 区域熔融法净化磷酸的初步研究[J]. 无机盐工业, 2010, 42(7):23-25.
[43] 张先锋. 区域熔融温度场数值模拟与实验研究[D]. 沈阳:东北大学, 2006.
[44] CHO Y Z, LEE T K, EUN H C, et al. Purification of used eutectic (LiCl-KCl) salt electrolyte from pyroprocessing[J]. Journal of Nuclear Materials, 2013, 437(1/2/3):47-54.
[45] SHIM M, CHOI H G, CHOI J H, et al. Separation of Cs and Sr from LiCl-KCl eutectic salt via a zone-refining process for pyroprocessing waste salt minimization[J]. Journal of Nuclear Materials, 2017, 491:9-17.
[46] CHOI H G, SHIM M, LEE J H, et al. Numerical analysis of impurity separation from waste salt by investigating the change of concentration at the interface during zone refining process[J]. Journal of Crystal Growth, 2017, 474:69-75.
[47] SHIM M, KIM Y M, LEE H H, et al. Separation behavior of impurities and selenium reduction by the reactive zone refining process using high-frequency induction heating to purify Te[J]. Journal of Crystal Growth, 2016, 455:6-12.
[48] CHO Y Z, PARK G H, LEE H S, et al. Concentration of cesium and strontium elements involved in a LiCl waste salt by a melt crystallization process[J]. Nuclear Technology, 2010, 171(3):325-334.
[49] WILLIAMS A N, PHONGIKAROON S, SIMPSON M F. Separation of CsCl from a ternary CsCl-LiCl-KCl salt via a melt crystallization technique for pyroprocessing waste minimization[J]. Chemical Engineering Science, 2013, 89:258-263.
[50] 付海英, 耿俊霞, 杨洋, 等. 乏燃料干法后处理中的熔盐减压蒸馏技术[J]. 核技术, 2018(4):5-12.
文章导航

/