无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
综述与专论

铋基双金属光催化剂合成及降解有机污染物研究进展

  • 梁芳 ,
  • 史发年
展开
  • 1.沈阳工业大学环境与化学工程学院,辽宁沈阳 110870
    2.沈阳科创化学品有限公司
梁芳(1983— ),女,博士研究生,高工,主要研究方向为金属配位聚合物材料设计与结构优化;E-mail: liangfang@sinochem.com

收稿日期: 2021-10-18

  网络出版日期: 2022-04-18

Research progress on synthesis of bismuth based bimetallic photocatalyst and degradation of organic pollutants

  • Fang LIANG ,
  • Fanian SHI
Expand
  • 1. School of Environmental and Chemical Engineering,Shenyang University of Technology,Shenyang 110870,China
    2. Shenyang Sciencreat Chemicals Co.,Ltd.

Received date: 2021-10-18

  Online published: 2022-04-18

摘要

铋基双金属光催化剂包括铋基双金属氧化物、铋基双金属配合物及铋酸盐。综述了铋基双金属光催化剂分类、制备方法及其在光催化降解水中有机污染物的研究进展。系统介绍了铋基双金属材料制备方法,包括水热法、溶剂热法、化学溶液分解法、熔盐法、沉淀法、高温固相法等。同时重点阐述了铋基双金属光催化剂掺杂和复合改性,并对铋基双金属光催化剂的研究方向进行了展望,目的是为开发高性能的铋基双金属光催化剂提供实用指南。

本文引用格式

梁芳 , 史发年 . 铋基双金属光催化剂合成及降解有机污染物研究进展[J]. 无机盐工业, 2022 , 54(4) : 61 -68 . DOI: 10.19964/j.issn.1006-4990.2021-0615

Abstract

Bismuth based bimetal photocatalysts(Bbbps) include bismuth based bimetal oxides,bismuth based bimetal coordination complexes and bismuth salts.The classification,preparation methods of Bbbps and their research advances in photocatalytic degradation of organic pollutants in water were reviewed.The synthesis methods of bismuth bimetallic materials were systematically introduced,including hydrothermal method,solvothermal method,chemical solution decomposition method,molten salt method,precipitation method,high temperature solid phase method,etc.At the same time,the doping and compound modification of Bbbps were emphasized,and the research direction of Bbbps was prospected.The aim was to provide a practical guide for the development of Bbbps with high performance.

参考文献

[1] 刘莹. 铁酸镁光催化剂合成与多种染料降解活性对比研究[J]. 无机盐工业, 2020, 52(11):103-107.
[2] 黄夏梦. 光催化材料Bi4O7/BiOBr的制备及其光催化性能研究[J]. 无机盐工业, 2021, 53(4):112-116.
[3] KALLAWAR G A, BARAI D P, BHANVASE B A. Bismuth titanate based photocatalysts for degradation of persistent organic compounds in wastewater:A comprehensive review on synjournal methods,performance as photocatalyst and challenges[J]. Journal of Cleaner Production, 2021, 318.Doi: 10.1016/j.jclepro.2021.128563.
[4] MENG Xiangchao, ZHANG Zisheng. Facile synjournal of BiOBr/Bi2WO6 heterojunction semiconductors with high visible-light-driven photocatalytic activity[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2015, 310:33-44.
[5] GAO Xiaoming, GAO Kailong, FU Feng, et al. Synergistic introducing of oxygen vacancies and hybrid of organic semiconductor:Realizing deep structure modulation on Bi5O7I for high-efficiency photocatalytic pollutant oxidation[J]. Applied Catalysis B:Environmental, 2020, 265.Doi: 10.1016/j.apcatb.2019.118562.
[6] TAHIR M B, RAFIQUE M, RAFIQUE M S, et al. Photocatalytic nanomaterials for degradation of organic pollutants and heavy metals[M]// Nanotechnology and Photocatalysis for Environmental Applications.Amsterdam:Elsevier, 2020:119-138.
[7] BAI Song, ZHANG Ning, GAO Chao, et al. Defect engineering in photocatalytic materials[J]. Nano Energy, 2018, 53:296-336.
[8] SUN Pingping, ZHANG Yuhang, PAN Guangxin, et al. Application of NiO-modified NiCo2O4 hollow spheres for high performance lithium ion batteries and supercapacitors[J]. Journal of Alloys and Compounds, 2020, 832.Doi: 10.1016/j.jallcom.2020.154954.
[9] KANG Ying, ZHANG Yuhang, SUN Pingping, et al. Bimetallic coordination polymer composites:A new choice of electrode materials for lithium ion batteries[J]. Solid State Ionics, 2020, 350.Doi: 10.1016/j.ssi.2020.115310.
[10] SHI Fanian, BAI Yiwen, LU Miao, et al. A one-dimensional Mn(Ⅱ)-based metal organic oxide:Structure and properties[J]. Transition Metal Chemistry, 2017, 42(7):605-614.
[11] SHI Fanian, LU Miao, BAI Yiwen, et al. pH controlled excellent photocatalytic activity of a composite designed from CuBi-based metal organic oxide and graphene[J]. Crystal Growth & Design, 2018, 18(9):5045-5053.
[12] LIANG Fang, LU Miao, ZHANG Yuhang, et al. Synjournal and structure of a bismuth-cobalt bimetal coordination polymer for green efficient photocatalytic degradation of organic wastes under visible light[J]. Journal of Molecular Structure, 2021, 1230.Doi: 10.1016/j.molstruc.2020.129636.
[13] YUE Zilong, FENG Yuquan, NG S W. A linear heterometallic bismuth-copper coordination polymer containing two types of organic ligands[J]. Acta Crystallographica Section C:Structural Chemistry, 2015, 71:100-102.
[14] PEARSON T J, FATAFTAH M S, FREEDMAN D E. Enhancement of magnetic anisotropy in a Mn-Bi heterobimetallic complex[J]. Chemical Communications(Cambridge,England), 2016, 52(76):11394-11397.
[15] SHI Fanian, SILVA A R, YANG Tinghai, et al. Mixed Cu(ii)-Bi(iii) metal organic framework with a 2D inorganic subnetwork and its catalytic activity[J]. CrystEngComm, 2013, 15(19):3776-3779.
[16] SHI Fanian, ROSA SILVA A, BIAN Liang. Bi-Mn mixed metal organic oxide:A novel 3d-6p mixed metal coordination network[J]. Journal of Solid State Chemistry, 2015, 225:45-52.
[17] 崔玉民, 李慧泉. 铋基光催化材料[M]. 北京: 化学工业出版社, 2015.
[18] LU Dingze, YANG Minchen, KUMAR K K, et al. Grape-like Bi2WO6 / CeO2 hierarchical microspheres:A superior visible-light-driven photoelectric efficiency with magnetic recycled characteristic[J]. Separation and Purification Technology, 2018, 194:130-134.
[19] YANG Qing, LUO Maolan, LIU Kewei, et al. A composite of singlecrystalline Bi2WO6 and polycrystalline BiOCl with a high percentage of exposed(00l) facets for highly efficient photocatalytic degradation of organic pollutants[J]. Chemical Communications(Cambridge,England), 2019, 55(40):5728-5731.
[20] DUAN Jihai, LIU Miyu, SONG Xiaokun, et al. Enhanced photocatalytic degradation of organic pollutants using carbon nanotube mediated CuO and Bi2WO6 sandwich flaky structures[J]. Nanotechnology, 2020, 31(42).Doi: 10.1088/1361-6528/ab9bd3.
[21] ZHAO Yu, XIE Yi, ZHU Xi, et al. Surfactant-free synjournal of hyperbranched monoclinic bismuth vanadate and its applications in photocatalysis,gas sensing,and lithium-ion batteries[J]. Chemistry-A European Journal, 2008, 14(5):1601-1606.
[22] ZHANG Lili, LONG Jinxin, PAN Wenwen, et al. Efficient removal of methylene blue over composite-phase BiVO4 fabricated by hydrothermal control synjournal[J]. Materials Chemistry and Physics, 2012, 136(2/3):897-902.
[23] JAYARAMAN V, AYAPPAN C, MANI A. Facile preparation of bismuth vanadate-sheet/carbon nitride rod-like interface photocatalyst for efficient degradation of model organic pollutant under direct sunlight irradiation[J]. Chemosphere, 2022, 287.Doi: 10.1016/j.chemosphere.2021.132055.
[24] SHIMODAIRA Y, KATO H, KOBAYASHI H, et al. Photophysical properties and photocatalytic activities of bismuth molybdates under visible light irradiation[J]. The Journal of Physical Chemistry B, 2006, 110(36):17790-17797.
[25] MARTÍNEZ-DE LA CRUZ A, GRACIA LOZANO L G. Photoas sisted degradation of organic dyes by β-Bi2Mo2O9[J]. Reaction Kinetics,Mechanisms and Catalysis, 2010, 99(1):209-215.
[26] ZHANG Xing, CHEN Suhang, LIAN Xiaoyan, et al. Efficient activation of peroxydisulfate by g-C3N4/Bi2MoO6 nanocomposite for enhanced organic pollutants degradation through non-radical dominated oxidation processes[J]. Journal of Colloid and Interface Science, 2022, 607:684-697.
[27] ZHOU Wenliu, ZHAO Zongyan. Electronic structures of efficient MBiO3(M=Li,Na,K,Ag) photocatalyst[J]. Chinese Physics B, 2016, 25(3):325-332.
[28] LI Linna, LIU Zhangsheng, GUO Litong, et al. NaBiO3/BiO2-x composite photocatalysts with post-illumination “memory” activity[J]. Materials Letters, 2019, 234:30-34.
[29] BORUAH B, GUPTA R, MODAK J M, et al. Novel insights into the properties of AgBiO3 photocatalyst and its application in immobilized state for 4-nitrophenol degradation and bacteria inactivation[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2019, 373:105-115.
[30] RAMACHANDRAN R, SATHIYA M, RAMESHA K, et al. Photocatalytic properties of KBiO3 and LiBiO3 with tunnel structures[J]. Journal of Chemical Sciences, 2011, 123(4):517-524.
[31] GUO Xiaoxia, WU Dan, LONG Xia, et al. Nanosheets-assembled Bi2WO6 microspheres with efficient visible-light-driven photocatalytic activities[J]. Materials Characterization, 2020, 163.Doi: 10.1016/j.matchar.2020.110297.
[32] TAN Ye, YIN Changjiu, ZHENG Shuilin, et al. Design and controllable preparation of Bi2MoO6/attapulgite photocatalyst for the removal of tetracycline and formaldehyde[J]. Applied Clay Science, 2021, 215.Doi: 10.1016/j.clay.2021.106319.
[33] MA Yongchao, ZHANG Yuanyuan, WANG Lili, et al. Single solvent-induced one-step solvothermal method:A general strategy for controllable synjournal of ternary and multiplex Bi-based composites[J]. Journal of Alloys and Compounds, 2019, 784:405-413.
[34] LIU H, SHON H K, OKOUR Y H, et al. Photocatalytic degradation of acid red G by bismuth titanate in three-phase fluidized bed photoreactor[J]. Journal of Advanced Oxidation Technologies, 2011, 14(1):115-121.
[35] ZHU Gangqiang, LIANG Jia, HOJAMBERDIEV M, et al. Ethylenediamine(EDA) -assisted hydrothermal synjournal of nitrogen-doped Bi2WO6 powders[J]. Materials Letters, 2014, 122:216-219.
[36] AGUSTINA E B, SURYANA R, IRIANI Y. Dependence of microstructure and optical properties on holding time and annealing temperature of BiFeO3 thin film fabricated by chemical solution deposition(CSD)[J]. Materials Today:Proceedings, 2021, 44:3313-3318.
[37] YAO Weifeng, XU Xiaohong, WANG Hong, et al. Photocatalytic property of perovskite bismuth titanate[J]. Applied Catalysis B: Environmental, 2004, 52(2):109-116.
[38] YAO Weifeng, WANG Hong, XU Xiaohong, et al. Photocatalytic property of bismuth titanate Bi2Ti2O7[J]. Applied Catalysis A:General, 2004, 259(1):29-33.
[39] SHAO Luhua, YANG Zhenfei, LI Sijian, et al. Molten-salt growth of Bi5FeTi3O15-based composite to dramatically boost photocatalytic performance[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2021, 415.Doi: 10.1016/j.jphotochem.2021.113306.
[40] ZHAO Wei, JIA Zhen, LEI E, et al. Photocatalytic degradation efficacy of Bi4Ti3O12 micro-scale platelets over methylene blue under visible light[J]. Journal of Physics and Chemistry of Solids, 2013, 74(11):1604-1607.
[41] NOH T H, HWANG S W, KIM J U, et al. Optical properties and visible light-induced photocatalytic activity of bismuth sillenites (Bi12XO20,X=Si,Ge,Ti)[J]. Ceramics International, 2017, 43(15):12102-12108.
[42] NOGUEIRA A E, LONGO E, LEITE E R, et al. Synjournal and photocatalytic properties of bismuth titanate with different structures via oxidant peroxo method(OPM)[J]. Journal of Colloid and Interface Science, 2014, 415:89-94.
[43] GUO Pengyao, HU Xiaomin, WANG Min. Solution combusting synjournal of xFe-Bi2MoO6 nanoparticles with increased photocatalytic performance for organic pollutants degradation[J]. Optik, 2020, 222.Doi: 10.1016/j.ijleo.2020.165399.
[44] JAYARAMAN V, AYAPPAN C, VATTIKONDALA G, et al. Preparation and characterization of the Cu,Fe co-doped Bi2Ti2O7/EGg-C3N4 material for organic model pollutants removal under direct sun light irradiation[J]. Materials Research Bulletin, 2021, 143.Doi: 10.1016/j.materresbull.2021.111439.
[45] YANG Zhengxin, WANG Ruiqi, XU Longjun, et al. Highly efficient flower-like Dy3+-doped Bi2MoO6 photocatalyst under simulated sunlight:Design,fabrication and characterization[J]. Optical Materials, 2021, 116.Doi: 10.1016/j.optmat.2021.111094.
[46] HUA Chenghe, WANG Jiawei, DONG Xiaoli, et al. In situ plasmonic Bi grown on I- doped Bi2WO6 for enhanced visible-light-driven photocatalysis to mineralize diverse refractory organic pollutants[J]. Separation and Purification Technology, 2020, 250.Doi: 10.1016/j.seppur.2020.117119.
[47] HABIBI-YANGJEH A, PIRHASHEMI M, GHOSH S. ZnO/ZnBi2O4 nanocomposites with p-n heterojunction as durable visible-lightactivated photocatalysts for efficient removal of organic pollutants[J]. Journal of Alloys and Compounds, 2020, 826.Doi: 10.1016/j.jallcom.2020.154229.
[48] SELVARAJAN S, SUGANTHI A, RAJARAJAN M, et al. Fabrication of highly efficient mesoporous NaBiO3/ZnO nanocomposites for recyclable photocatalytic degradation of organic pollutants[J]. Optik-International Journal for Light and Electron Optics, 2018, 153:16-30.
[49] WANG Yan, JUNG D. Synjournal of novel BiOCl/LiBiO3 p-n heterojunction photocatalysts and their enhanced photocatalytic performance[J]. Solid State Sciences, 2019, 91:42-48.
[50] ZHOU Bin, ZHAO Xu, LIU Huijuan, et al. Synjournal of visible-light sensitive M-BiVO4 (M=Ag,Co,and Ni) for the photocatalytic degradation of organic pollutants[J]. Separation and Purification Technology, 2011, 77(3):275-282.
文章导航

/