柠檬酸三钠对低钠光卤石分解制备氯化钾晶体粒度影响研究
收稿日期: 2021-07-01
网络出版日期: 2022-04-18
基金资助
青海省重点研发与转化计划-科技合作专项(2018-HZ-818);青海民族大学自然科学基金(2019XJZD01);青海民族大学科研创新团队专项
Study on effect of trisodium citrate on particle size of potassium chloride crystal prepared by decomposition of low sodium carnallite
Received date: 2021-07-01
Online published: 2022-04-18
针对光卤石分解制备的氯化钾晶体平均粒径小导致过滤、洗涤损失大以及干燥能耗高的问题,以柠檬酸三钠为成核抑制剂,考察了柠檬酸三钠添加浓度、加入光卤石溶液的浓度、搅拌速率、停留时间、加入光卤石溶液的体积、加液速率对氯化钾晶体粒度的影响。在单因素实验的基础上采用3因素3水平的Box-Behnken响应面优化设计方法做了研究。结果表明:在柠檬酸三钠添加浓度为0.007 mol/L、加入光卤石溶液质量浓度为0.759 g/mL、搅拌速率为372.52 r/min、停留时间为40 min、加入光卤石溶液体积为100 mL、加液速率为2 mL/min的条件下可制得平均粒径为595.892 μm的氯化钾晶体,是未添加柠檬酸三钠、其他实验条件不变时所得氯化钾产品的平均粒径(351.607 μm)的1.69倍,并且氯化钾产品纯度为95.82%,符合GB/T 7118—2008《工业氯化钾》质量标准要求。实验结果为提高氯化钾产品的粒度提供参考。
杜景灵 , 董伟兵 , 切知加 , 马生奎 , 田红斌 , 王刚 . 柠檬酸三钠对低钠光卤石分解制备氯化钾晶体粒度影响研究[J]. 无机盐工业, 2022 , 54(4) : 112 -118 . DOI: 10.19964/j.issn.1006-4990.2021-0396
Aiming at the problems of small average particle size of potassium chloride crystal prepared by carnallite decomposition,resulting in large loss of filtration and washing and high energy consumption in drying,the effect of adding concentration of trisodium citrate,concentration of carnallite solution,stirring rate,residence time,volume and rate of carnallite solution on the particle size of potassium chloride crystal was investigated with trisodium citrate as nucleation inhibitor.Based on the single factor experiment,the Box-Behnken response surface optimization design method of three factors and three levels was used to study.The results showed that the average particle size of potassium chloride crystal was 595.892 μm under the conditions of adding 0.007 mol/L trisodium citrate,adding 0.759 g/mL carnallite solution,stirring rate of 372.52 r/min,residence time of 40 min,adding volume of 100 mL and adding rate of 2 mL/min,which was 1.69 times of the average particle size (351.607 μm) of the obtained potassium chloride product when trisodium citrate was not added and other experimental conditions remained unchanged.And the purity of potassium chloride product was 95.82%,which met the requirements of potassium chloride product quality standard of“Industrial potassium chloride” GB/T 7118—2008.The experimental results provided a reference for improving the particle size of potassium chloride products.
[1] | 赵悦年, 牛小慧. 光卤石分解制备氯化钾的工艺条件优化试验研究[J]. 当代化工, 2019, 48(6):1706-1710. |
[2] | JIN S S, CHEN M Y, LI Z F. Design and mechanism of the formation of spherical KCl particles using cooling crystallization without additives[J]. Powder Technology, 2018, 329:455-462. |
[3] | 叶秀深, 权朝明, 张慧芳, 等. 超声预处理对十二烷基吗啉浮选NaCl、KCl和光卤石行为的影响[J]. 无机盐工业, 2018, 50(8):26-28. |
[4] | TAVARES J A, MOURA L F, BERNARDO A, et al. Crystallization and separation of KCl from carnallite ore:Process development,simulation and economic feasibility[J]. Chemical Industry & Chemical Engineering Quarterly, 2018, 24(3):239-249. |
[5] | CHENG C, HUANG Z Q, ZHANG R R, et al. Synjournal of an emerging morpholine-typed gemini surfactant and its application in reverse flotation carnallite ore for production of potash fertilizer at low temperature[J]. Journal of Cleaner Production, 2020, 261:1-8. |
[6] | 陈默, 沙作良. 用“冷分解-筛分法”生产氯化钾的新工艺研究[J]. 无机盐工业, 2021, 53(1):65-67. |
[7] | 杜佩英, 史忠录, 吴亚洲, 等. 反浮选—冷结晶生产工艺优化研究与探讨[J]. 盐科学与化工, 2021, 50(2):38-40. |
[8] | MANSOUR A R, TAKROURI K J. A new technology for the crystallization of dead sea potassium chloride[J]. Chemical Engineering Communications, 2007, 194(6):803-810. |
[9] | 谢玉龙, 赵亮. 光卤石分解制取氯化钾晶体粒度控制技术[J]. 盐湖研究, 2010, 18(2):66-68. |
[10] | 赵玉峰, 李文善. 光卤石的分解母液中氯化镁含量对结晶器生产中氯化钾粒度的影响探究[J]. 化工管理, 2016, 4(33):57. |
[11] | 任青峰. 关于光卤石分解制取氯化钾晶体粒度控制技术的探讨[J]. 中国石油和化工标准与质量, 2018, 38(19):166-167. |
[12] | 洪磊. 细粒级氯化钾对生产的影响及处理方法研究[J]. 盐业与化工, 2016, 45(5):6-8. |
[13] | 周玲, 沙作良, 唐娜, 等. 光卤石分解制取氯化钾结晶过程的研究[J]. 盐业与化工, 2009, 38(4):13-18. |
[14] | 张莉媛, 王刚, 白树宽, 等. 表面活性剂对氯化钾结晶介稳区和诱导期测定的影响[J]. 盐科学与化工, 2020, 49(3):35-39. |
[15] | 靳沙沙, 李振方, 朱明河, 等. 结晶方式和添加剂对氯化钾晶体形貌作用的研究[J]. 盐科学与化工, 2018, 47(2):15-19. |
[16] | 孙祥斌, 张楠, 窦焰. 柠檬酸铵对水热合成α-CaSO4·0.5H2O结晶过程的影响[J]. 高校化学工程学报, 2019, 33(1):96-102. |
[17] | 罗英极, 陆海勤, 焦博. 化学添加剂对碳酸钙晶体的影响[J]. 食品工业, 2013, 34(5):178-181. |
[18] | PRYWER J, MIELNICZEK-BRZÓSKA E, OLSZYNSKI M. Struvite crystal growth inhibition by trisodium citrate and the formation of chemical complexes in growth solution[J]. Journal of Crystal Growth, 2015, 418:92-101. |
[19] | 侯黎爽, 谷守玉, 侯翠红, 等. 响应面法优化焦磷酸钠螯合锌的制备工艺研究[J]. 无机盐工业, 2020, 52(7):30-35,93. |
[20] | 檀美娟, 张宇臣, 陈小娥, 等. 响应面法优化高纯度石榴酸制备工艺[J]. 食品工业, 2021, 42(2):69-74. |
[21] | YUAN W, ZHANG L H, LIU Y, et al. Sulfide removal and water recovery from ethylene plant spent caustic by suspension crystallization and its optimization via response surface methodology[J]. Journal of Cleaner Production, 2020, 242.Doi: 10.1016/j.jclepro.2019.118439. |
[22] | 袁俊生, 范晶. 添加剂对硝酸钾结晶习性影响的研究[J]. 人工晶体学报, 2007, 36(4):853-858. |
[23] | 汤秀华, 李军, 周堃, 等. 磷酸二氢钾结晶介稳区宽度的研究[J]. 无机盐工业, 2007, 39(7):27-29. |
[24] | 万俊峰, 齐美玲, 陈许龙, 等. 低钠光卤石为原料间歇冷却制备大颗粒球形氯化钾[J]. 盐科学与化工, 2021, 50(1):21-24. |
[25] | 张莉媛, 王刚, 齐美玲, 等. FBRM、PVM在氯化钾结晶介稳区测定中的应用研究[J]. 盐科学与化工, 2019, 48(11):29-32. |
[26] | 邹艳爽. 光卤石热分解制备氯化钾技术研究[D]. 天津:天津科技大学, 2015. |
[27] | 保英莲, 张志强. 光卤石分解制取KCl结晶过饱和度影响的研究[J]. 盐业与化工, 2014, 43(9):15-18. |
[28] | 祁洪波, 杨维强, 赵洪年. 提高氯化钾产品质量的工艺研究[J]. 盐业与化工, 2006, 35(6):7-10. |
/
〈 |
|
〉 |