无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
研究与开发

复合阳极Ni-Fe/Ce0.9Gd0.1O1.95在阴极支撑单电池的性能及其表征

  • 由宏新 ,
  • 王强 ,
  • 彭炼
展开
  • 大连理工大学化工学院,辽宁大连 116024
由宏新(1967— ),男,博士,副教授,研究方向为燃料电池及氢能存储;E-mail: youhx@dlut.edu.cn

收稿日期: 2021-03-24

  网络出版日期: 2022-03-14

Performance and characterization of Ni-Fe/Ce0.9Gd0.1O1.95 composite anode for cathode-supported single cell

  • Hongxin YOU ,
  • Qiang WANG ,
  • Lian PENG
Expand
  • School of Chemical Engineering,Dalian University of Technology,Dalian 116024,China

Received date: 2021-03-24

  Online published: 2022-03-14

摘要

为了提高固体氧化物燃料电池在中温条件下的电性能,探索了一种双金属阳极的阴极支撑单电池。单电池以La0.6Sr0.4CoO3(LSC)-Ce0.9Gd0.1O1.95(GDC)为阴极支撑体,旋涂了甘氨酸-硝酸盐法制备的La0.9Sr0.1Ga0.8Mg0.2O3-δ(LSGM)电解质及Sm0.2Ce0.8O1.9(SDC)缓冲层,涂覆了由硬模板法和浸渍法结合制备的Ni-Fe/GDC双金属阳极。对制备材料进行了XRD和微观形貌分析,单电池电化学测试在800 ℃和750 ℃下,以氢气为燃料的最大功率密度达0.73 W/cm2和0.64 W/cm2,以甲烷为燃料时达0.41 W/cm2和0.40 W/cm2。测试后的SEM表明,阳极具有多孔的微观结构,金属颗粒均匀包覆蠕虫状GDC,保证了单电池具有较高的发电性能。

本文引用格式

由宏新 , 王强 , 彭炼 . 复合阳极Ni-Fe/Ce0.9Gd0.1O1.95在阴极支撑单电池的性能及其表征[J]. 无机盐工业, 2022 , 54(1) : 34 -38 . DOI: 10.19964/j.issn.1006-4990.2021-0182

Abstract

The bimetallic anode for the cathode-supported single cell was explored to improve the electrochemical performance of intermediate temperature solid oxide fuel cell.The single cell was supported by the La0.6Sr0.4CoO3(LSC)-Ce0.9Gd0.1O1.95(GDC)cathode-supported body,which was coated the La0.9Sr0.1Ga0.8Mg0.2O3-δ(LSGM) electrolyte film and the Sm0.2Ce0.8O1.9(SDC) bu-ffer layer by spin-coating,and was tape-coated the Ni-Fe/GDC composite anode.The electrolyte was prepared by glycine-nitrate process,and the anode was prepared by hard template and wet impregnation method.The prepared materials were ana-lyzed by XRD and SEM.The maximum power densities of the cell were 0.73 W/cm2 and 0.64 W/cm2 at 800 ℃ and 750 ℃ in hydrogen,and the values were 0.41 W/cm2 and 0.40 W/cm2 in dry methane,respectively.The conducted SEM showed that the anode had the porous microstructure with high specific surface and bimetallic particles were densely coated on the vermicular GDC,which resulted in the high power generation performance.

参考文献

[1] MINH N Q. Solid oxide fuel cell technology-Features and applica-tions[J]. Solid State Ionics, 2004, 174(1/2/3/4):271-277.
[2] 韩敏芳. 固体氧化物燃料电池(SOFC)技术进展和产业前景[J]. 民主与科学, 2017(5):25-26.
[3] 蒋三平. 中温固体氧化物燃料电池优势和挑战的简要评述(英文)[J]. 电化学, 2012, 18(6):479-495.
[4] 孙帆, 郑勇, 高小龙, 等. 固体氧化物燃料电池电解质和电极材料的研究进展[J]. 金属功能材料, 2010, 17(4):75-80.
[5] MOLENDA J, SWIERCZEK K, ZAJAC W. Functional materials for the IT-SOFC[J]. Journal of Power Sources, 2007, 173(2):657-670.
[6] LEE D, HAN J H, CHUN Y, et al. Preparation and characterization of strontium and magnesium doped lanthanum gallates as the elec-trolyte for IT-SOFC[J]. Journal of Power Sources, 2007, 166(1):35-40.
[7] 隋静, 董立峰. 锥管状LSGM电解质支撑的SOFC的研制[J]. 电池, 2014, 44(5):274-276.
[8] TAO Y, SHAO J, WANG J, et al. Synjournal and properties of La0.6Sr0.4CoO3-δ nanopowder[J]. Journal of Power Sources, 2008, 185(2):609-614.
[9] 王海霞, 屠恒勇. SOFC阴极材料La0.6Sr0.4CoO3-δ的甘氨酸-硝酸盐法合成与表征[J]. 功能材料, 2010, 41(3):397-400.
[10] ISHIHARA T, YAN J, SHINAGAWA M, et al. Ni-Fe bimetallic anode as an active anode for intermediate temperature SOFC using LaGaO3 based electrolyte film[J]. Electrochimica Acta, 2006, 52(4):1645-1650.
[11] ISHIHARA T, SHINAGAWA M, KAWAKAMI A, et al. Ni-Fe bi-metallic anode for intermediate temperature solid oxide fuel cells using LaGaO3 based oxide electrolyte[J]. Materials Science Forum, 2007, 539-543:1350-1355.
[12] SUN Y F, LI J H, CUI L, et al. A-site-deficiency facilitated in situ growth of bimetallic Ni-Fe nano-alloys:A novel coking-tolerant fuel cell anode catalyst[J]. Nanoscale, 2015, 7(25):11173-11181.
[13] SIN A, KOPNIN E, DUBITSKY Y, et al. Performance and life-time behaviour of NiCu-CGO anodes for the direct electro-oxidation of methane in IT-SOFCs[J]. Journal of Power Sources, 2007, 164(1):300-305.
[14] 王群浩, 林冬, 彭开萍. CuNi-GDC双金属阳极支撑的IT-SOFC制备及性能[J]. 电源技术, 2012, 36(8):1128-1131.
[15] AN W, GATEWOOD D, DUNLAP B, et al. Catalytic activity of bi-metallic nickel alloys for solid-oxide fuel cell anode reactions from density-functional theory[J]. Journal of Power Sources, 2011, 196(10):4724-4728.
[16] 田丰源, 刘江. 固体氧化物燃料电池的制备工艺[J]. 硅酸盐学报, 2021, 49(1):136-152.
[17] 冯潇, 赵雪雪, 邢亚哲. 热喷涂制备固体氧化物燃料电池电解质层的研究进展[J]. 表面技术, 2019, 48(4):10-17.
[18] CHELMEHSARA M E, MAHMOUDIMEHR J. Techno-economic comparison of anode-supported,cathode-supported,and electrolyte-supported SOFCs[J]. International Journal of Hydrogen Energy, 2018, 43(32):15521-15530.
[19] SHRI P B, SENTHIL K S, ARUNA S T. Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell:A review[J]. Renewable and Sustainable Energy Reviews, 2014, 36:149-179.
[20] LIU Y, HASHIMOTO S, NISHINO H, et al. Fabrication and charac-terization of a co-fired La0.6Sr0.4Co0.2Fe0.8O3-δ cathode-supported Ce0.9Gd0.1O1.95 thin-film for IT-SOFCs[J]. Journal of Power Sources, 2007, 164(1):56-64.
[21] CHEN X J, LIU Q L, CHAN S H, et al. High performance cathode-supported SOFC with perovskite anode operating in weakly humi-dified hydrogen and methane[J]. Electrochemistry Communicat-ions, 2007, 9(4):767-772.
[22] YAMAGUCHI T, SHIMIZU S, SUZUKI T, et al. Fabrication and characterization of high performance cathode supported small-scale SOFC for intermediate temperature operation[J]. Electrochemistry Communications, 2008, 10(9):1381-1383.
[23] MCINTOSH S, GORTE R J. Direct hydrocarbon solid oxide fuel cells[J]. Chemical Reviews, 2004, 104(10):4845-4865.
[24] SMITH R B, BAZANT M Z. Multiphase porous electrode theory[J]. Journal of the Electrochemical Society, 2017, 164(11):E3291-E3310.
[25] YANG C, CHENG J, HE H, et al. Ni/SDC materials for solid oxide fuel cell anode applications by the glycine-nitrate method[J]. Key Engineering Materials, 2010, 434-435(3):731-734.
[26] OH T S, YU A S, ADIJANTO L, et al. Infiltrated lanthanum stron-tium chromite anodes for solid oxide fuel cells:Structural and cat-alytic aspects[J]. Journal of Power Sources, 2014, 262:207-212.
[27] CHICK L A, PEDERSON L R, MAUPIN G D, et al. Glycine-nitrate combustion synjournal of oxide ceramic powders[J]. Materials Let-ters, 1990, 10(1/2):6-12.
[28] HUANG K, GOODENOUGH J B. A solid oxide fuel cell based on Sr-and Mg-doped LaGaO3 electrolyte:The role of a rare-earth oxide buffer[J]. Journal of Alloys and Compounds, 2000, 303-304:454-464.
[29] YOU H, ZHAO C, QU B, et al. Fabrication of Ni0.5Cu0.5Ox coated YSZ anode by hard template method for solid oxide fuel cells[J]. Jour-nal of Alloys and Compounds, 2016, 669:46-54.
文章导航

/