无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
研究与开发

基于水热/溶剂热法制备不同形貌LiNi0.8Co0.1Mn0.1O2 锂离子电池正极材料

  • 吴兆国 ,
  • 曹骏 ,
  • 杨则恒
展开
  • 合肥工业大学化学与化工学院,可控化学与材料化工安徽省重点实验室,安徽合肥 230009
吴兆国(1996— ),男,硕士研究生,主要研究方向为锂离子电池正极材料;E-mail: 734527532@qq.com

收稿日期: 2021-04-09

  网络出版日期: 2022-03-14

基金资助

国家自然科学基金项目(NSFC 91834301);安徽省科技重大专项(201903a05020021);安徽省科技重大专项(202003a05020046)

Preparation of LiNi0.8Co0.1Mn0.1O2 cathode materials with different morphologies based on hydrothermal/solvothermal method

  • Zhaoguo WU ,
  • Jun CAO ,
  • Zeheng YANG
Expand
  • School of Chemistry and Chemical Engineering,Hefei University of Technology,Anhui Key Laboratory Controllable Chemistry Reaction Material Chemical Engineering,Hefei 230009,China

Received date: 2021-04-09

  Online published: 2022-03-14

摘要

基于水热/溶剂热法制备LiNi0.8Co0.1Mn0.1O2电极材料,以镍、钴、锰乙酸盐为原料,以六亚甲基四胺为沉淀剂、水或乙醇为溶剂,通过调节溶剂组分控制Ni0.8Co0.1Mn0.1(OH)2(NCM)的成核与生长速率,从而合成两种形貌不同的Ni0.8Co0.1Mn0.1(OH)2前驱体,再经过混锂煅烧获得LiNi0.8Co0.1Mn0.1O2正极材料,研究比较了其电化学性能。以水为溶剂通过水热法合成的前驱体样品呈现出由一次片状颗粒紧密堆积组成的长方体状二次颗粒形貌,经混锂煅烧得到的产物表现出较高的放电比容量,在0.5C倍率下首次放电比容量可达到189.70 mA·h/g,循环200次容量保持率为69.72%。以乙醇为溶剂通过溶剂热法合成得到球形二次颗粒前驱体,最终得到的产物具有多孔球形结构,表现出了优异的循环性能,0.5C首次放电比容量为178.65 mA·h/g,循环200次容量保持率仍高达94.55%。

本文引用格式

吴兆国 , 曹骏 , 杨则恒 . 基于水热/溶剂热法制备不同形貌LiNi0.8Co0.1Mn0.1O2 锂离子电池正极材料[J]. 无机盐工业, 2022 , 54(2) : 72 -77 . DOI: 10.19964/j.issn.1006-4990.2021-0234

Abstract

LiNi0.8Co0.1Mn0.1O2 electrode material was prepared by hydrothermal/solvothermal method.Two precursors of Ni0.8Co0.1Mn0.1(OH)2 with different morphology were synthesized by adjusting the solvent composition and controlling the nu-cleation and growth rate of Ni0.8Co0.1Mn0.1(OH)2 with nickel,cobalt and manganese acetate as raw materials,hexamethylene tetramine as precipitant and water or ethanol as solvent.LiNi0.8Co0.1Mn0.1O2 cathode material was obtained by lithium mixed calcination,and its electrochemical property was studied and compared.By using water as the solvent,the prepared precursor composed of rectangular parallelepiped secondary particles was synthesized,which were assembled by plate-like primary particles.The obtained product exhibited a high specific discharge capacity of 189.70 mA·h/g and a capacity retention of 69.72% after 200 cycles at 0.5C.By using ethanol as the solvent,the spherical secondary particle precursor was synthesized.The final product was evolved into porous spherical structure and exhibited excellent cycle performance.It delivered a specific discharge capacity of 178.65 mA·h/g and a high capacity retention of 94.55% after 200 cycles at 0.5C.

参考文献

[1] MANTHIRAM A, KNIGHT J C, MYUNG S T, et al. Nickel-rich and lithium-rich layered oxide cathodes:Progress and perspectives[J]. Advanced Energy Materials, 2016, 6(1).Doi: 10.1002/aenm.201501010.
[2] LARCHER D, TARASCON J M. Towards greener and more sustain-able batteries for electrical energy storage[J]. Nature Chemistry, 2014, 7(1):19-29.
[3] ANDRE D, KIM S J, LAMP P, et al. Future generations of cathode materials:An automotive industry perspective[J]. Journal of Mate-rials Chemistry A, 2015, 3(13):6709-6732.
[4] SUN Y K. High-capacity layered cathodes for next-generation elec- tric vehicles[J]. ACS Energy Letters, 2019, 4(5):1042-1044.
[5] LIU W, OH P, LIU X, et al. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries[J]. Angewandte Chemie International Ed., 2015, 54(15):4440-4457.
[6] MANTHIRAM A, SONG B, LI W, et al. A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries[J]. Energy Storage Materials, 2017, 6:125-139.
[7] PARK K J, JUNG H G, KUO L Y, et al. Improved cycling stability of Li[Ni0.90Co0.05Mn0.05]O2 through microstructure modification by boron doping for Li-Ion Batteries[J]. Advanced Energy Materials, 2018, 8(25).Doi: 10.1002/aenm.201801202.
[8] LI Q, DANG R, CHEN M, et al. Synjournal method for long cycle life lithium-ion cathode material:Nickel-rich core-shell LiNi0.8Co0.1Mn0.1O2[J]. ACS Applied Materials & Interfaces, 2018, 10(21):17850-17860.
[9] LI L, CHEN Z, ZHANG Q, et al. A hydrolysis-hydrothermal route for the synjournal of ultrathin LiAlO2-inlaid LiNi0.5Co0.2Mn0.3O2 as a high-performance cathode material for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2014, 3(2):894-904.
[10] WU F, WANG Z, SU Y, et al. Synjournal and characterization of ho-llow spherical cathode Li1.2Mn0.54Ni0.13Co0.13O2 assembled with nano-structured particles via homogeneous precipitation-hydrothermal synjournal[J]. Journal of Power Sources, 2014, 267:337-346.
[11] WU N, WU H, LIU H, et al. Solvothermal coating LiNi0.8Co0.15Al0.05O2 microspheres with nanoscale Li2TiO3 shell for long lifespan Li-ion battery cathode materials[J]. Journal of Alloys & Compounds, 2016, 665:48-56.
[12] QUAN W, TANG Z, HONG Y, et al. Hydroxyl compensation effects on the cycle stability of nickel-cobalt layered double hydroxides synthesized via solvothermal method[J]. Electrochimica Acta, 2015, 182:445-451.
[13] PENG L, ZHU Y, KHAKOO U, et al. Self-assembled LiNi1/3Co1/3Mn1/3O2 nanosheet cathodes with tunable rate capabili-ty[J]. Nano Energy, 2015, 17:36-42.
[14] HUANG Z D, LIU X M, OH S W, et al. Microscopically porous,in-terconnected single crystal LiNi1/3Co1/3Mn1/3O2 cathode material for Lithium-ion batteries[J]. Journal of Materials Chemistry, 2011, 21(29):10777-10784.
[15] ZHAO J, WANG Z, WANG J, et al. Anchoring K + in Li + sites of LiNi0.8Co0.15Al0.05O2 cathode material to suppress its structural de-gradation during high-voltage cycling[J]. Energy Technology, 2018, 6(12):2358-2366.
[16] DUAN Y, YANG L, ZHANG M J, et al. Insights into Li/Ni ordering and surface reconstruction during synjournal of Ni-rich layered ox-ides[J]. Journal of Materials Chemistry A, 2019, 7(2):513-519.
[17] JOSÉ O L, CARLOS G Y, RIGOBERTO L J. Synjournal of advanced ceramics by hydrothermal crystallization and modified related methods[J]. Journal of Advanced Ceramics, 2012, 1(3):204-220.
文章导航

/