Mg-MOF-74在Knoevenagel缩合反应中的催化性能研究
收稿日期: 2021-05-18
网络出版日期: 2022-03-14
Study on catalytic performance of Mg-MOF-74 in the Knoevenagel condensation reaction
Received date: 2021-05-18
Online published: 2022-03-14
在溶剂热条件下,使用四水合乙酸镁和2,5-二羟基对苯二甲酸合成Mg-MOF-74,通过元素分析、扫描电子显微镜(SEM)、X衍射衍射光谱(XRD)、红外光谱(FT-IR)和热重(TG)表征方法,分析和确定其结构和性质。碱土金属中心和酚酸氧配体的结合,极大地增强了金属有机骨架化合物(MOFs)材料的碱性。为了探索Mg-MOF-74的催化活性,将其用于催化苯甲醛与氰基乙酸乙酯的Knoevenagel缩合反应,生成(E)-α-氰基肉桂酸乙酯。通过改变反应时间、溶剂类型、底物浓度、催化剂的量、搅拌速率和反应温度等条件来提高转化率。在较温和的条件下,反应的转化率达到94.5%,选择性大于99.5%。催化剂易于从溶液中分离出来,表现出良好非均相性。在5次循环实验之后,催化效果没有明显的降低。
关键词: Knoevenagel缩合反应; 非均相催化; Mg-MOF-74; 2,5-二羟基对苯二甲酸
宋修铎 , 蔡哲 , 李晓云 , 孙彦民 , 韩恩山 . Mg-MOF-74在Knoevenagel缩合反应中的催化性能研究[J]. 无机盐工业, 2022 , 54(2) : 111 -116 . DOI: 10.19964/j.issn.1006-4990.2021-0326
Under solvothermal conditions,Mg-MOF-74 was synthesized by magnesium acetate and 2,5-dihydroxyterephth-alic acid.Through elemental analysis,scanning electron microscopy,X-ray diffraction spectroscopy,infrared spectroscopy and thermogravimetry,the structure and properties of them were analyzed and determined.The incorporation of alkaline earth metals and phenoxy structural ligand was an effective way to increase the basicity of MOFs.To explore catalytic activity of Mg-MOF-74,it was applied to catalyze the Knoevenagel condensation of benzaldehyde with ethyl cyanoacetate to produce ethyl(E)-α-cyanocinnamate.The conversion rate could be improved by changing the reaction time,solvent type,substrate concentration,amount of catalyst,stirring rate and reaction temperature.Under milder conditions,the conversion rate of the reaction was 94.5% and the selectivity was greater than 99.5% for the Mg-MOF-74.The Mg-MOF-74 could be easily separated from the solution with good heterogeneity and it was used 5 runs without significant loss of catalytic efficiency.
[1] | ZHU L, LIU X Q, JIANG H L, et al. Metal-organic frameworks for heterogeneous basic catalysis[J]. Chemical Reviews, 2017, 117(12):8129-8176. |
[2] | VALVEKENS P, JONCKHEERE D, DE BAERDEMAEKER T, et al. Base catalytic activity of alkaline earth mofs:A(micro) spectro-scopic study of active site formation by the controlled transforma tion of structural anions[J]. Chemical Science, 2014, 5(11):4517-4524. |
[3] | ASGHARNEJAD L, ABBASI A, NAJAFI M, et al. Synjournal and st-ructure of three new alkaline earth metal-organic frameworks with high thermal stability as catalysts for knoevenagel condensation[J]. Crystal Growth Design, 2019, 19(5):2679-2686. |
[4] | ZHANG X F, LAI E S M, MARTIN-ARANDA R, et al. An investiga-tion of Knoevenagel condensation reaction in microreactors using a new zeolite catalyst[J]. Applied Catalysis A:General, 2004, 261(1):109-118. |
[5] | CONSTANTINO V R, PINNAVAIA T J. Structure-reactivity rela-tionships for basic catalysts derived from a Mg2+/Al3+/CO32- layered double hydroxide[J]. Catalysis Letters, 1994, 23(3/4):361-367. |
[6] | HATTORI H, SHIMA M, KABASHIMA H, et al. Alcoholysis of ester and epoxide catalyzed by solid bases[J]. Studies in Surface Science and Catalysis, 2000, 130:3507-3512. |
[7] | LAURON-PERNOT H, LUCK F, POPA J, et al. Methylbutynol:A new and simple diagnostic tool for acidic and basic sites of solids[J]. Applied Catalysis, 1991, 78(2):213-225. |
[8] | MANGALA K, SREEKUMAR K. Dendrimer functionalized polysilane:An efficient and recyclable organocatalyst[J]. Journal of Applied Polymer Science, 2015, 132(9-10):10.1002/app.41593. |
[9] | SUN Y B, CAO C Y, HUANG P P, et al. Amines functionalized C60 as solid base catalysts for Knoevenagel condensation with high ac-tivity and stability[J]. RSC Advances, 2015, 5(105):86082-86087. |
[10] | GASCON J, CORMA A, KAPTEIJN F, et al. Metal organic frame-work catalysis:Quo vadis?[J]. ACS Catalysis, 2014, 4(2):361-378. |
[11] | CHEN Y, HONG S, FU C W, et al. Investigation of the mesoporous metal-organic framework as a new platform to study the transport phenomena of biomolecules[J]. ACS Applied Materials Interfaces, 2017, 9(12):10874-10881. |
[12] | YUAN S, LIU T F, FENG D, et al. A single crystalline porphyrinic titanium metal-organic framework[J]. Chemical Science, 2015, 6(7):3926-3930. |
[13] | TIAN J, XU Z Y, ZHANG D W, et al. Supramolecular metal-organic frameworks that display high homogeneous and heterogeneous pho-tocatalytic activity for H2 production[J]. Nature Communications, 2016, 7(1):1-9. |
[14] | FROMM K M. Coordination polymer networks with s-block metal ions[J]. Coordination Chemistry Reviews, 2008, 252(8/9):856-885. |
[15] | MAITY T, SAHA D, DAS S, et al. Barium carboxylate metal-organic framework-synjournal,X-ray crystal structure,photoluminescence and catalytic study[J]. European Journal of Inorganic Chemistry, 2012, 2012(30):4914-4920. |
[16] | QUEEN W L, HUDSON M R, BLOCH E D, et al. Comprehensive study of carbon dioxide adsorption in the metal-organic frameworks M2(dobdc)(M=Mg,Mn,Fe,Co,Ni,Cu,Zn)[J]. Chemical Science, 2014, 5(12):4569-4581. |
[17] | LEE K, HOWE J D, LIN L C, et al. Small-molecule adsorption in open-site metal-organic frameworks:A systematic density functio-nal theory study for rational design[J]. Chemistry of Materials, 2015, 27(3):668-678. |
[18] | YANG Y, YAO H F, XI F G, et al. Amino-functionalized Zr(Ⅳ)me-tal-organic framework as bifunctional acid-base catalyst for Kno-evenagel condensation[J]. Journal of Molecular Catalysis A:Che-mical, 2014, 390:198-205. |
[19] | HARTMANN M, FISCHER M. Amino-functionalized basic cataly-sts with MIL-101 structure[J]. Microporous Mesoporous Materials, 2012, 164:38-43. |
[20] | DIETZEL P D C, BESIKIOTIS V, BLOM R, et al. Application of metal-organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide[J]. Journal of Materials Chemistry, 2009, 19(39):7362-7370. |
[21] | BAO Z, YU L, REN Q, et al. Adsorption of CO2 and CH4 on a mag-nesium-based metal organic framework[J]. Colloid and Interface Science, 2011, 353(2):549-556. |
[22] | CLIMENT M J, CORMA A, DOMíNGUEZ I, et al. Gem-diamines as highly active organocatalysts for carbon-carbon bond forma-tion[J]. Journal of Catalysis, 2007, 246(1):136-146. |
[23] | CORMA A, IBORRA S, RODRIGUEZ I, et al. Immobilized proton sponge on inorganic carriers:The synergic effect of the support on catalytic activity[J]. Journal of Catalysis, 2002, 211(1):208-215. |
[24] | RODRIGUEZ I, SASTRE G, CORMA A, et al. Catalytic activity of proton sponge:Application to Knoevenagel condensation reactio-ns[J]. Journal of Catalysis, 1999, 183(1):14-23. |
[25] | BURGOYNE A R, MEIJBOOM R. Knoevenagel condensation reac-tions catalysed by metal-organic frameworks[J]. Catalysis Letters, 2013, 143(6):563-571. |
/
〈 |
|
〉 |