金属氧化物半导体基三乙胺传感器研究进展
收稿日期: 2021-03-12
网络出版日期: 2021-12-16
基金资助
国家自然科学基金(U1704255);河南省教育厅自然科学基金(20A430014)
Research progress on metal oxide semiconductor based triethylamine gas sensors
Received date: 2021-03-12
Online published: 2021-12-16
三乙胺是一种应用广泛但对人体有毒副作用的挥发性有机物,需要长期有效的监测,开发一种性能稳定、安全可靠的三乙胺气敏传感器,实现对环境中三乙胺气体浓度实时检测,对于三乙胺的安全储存、运输和使用等环节是至关重要的。金属氧化物半导体基气敏传感器具有制备简单、价格低廉、响应值高等优点,在三乙胺气体的检测中具有不可替代的作用。重点介绍了基于金属氧化物半导体的三乙胺传感器最新研究进展。综述了近年来包括掺杂、异质结、有机金属骨架和氧化还原石墨烯在内的关于金属氧化物半导体基三乙胺气敏材料的制备和性能等方面的研究成果。论述了金属氧化物半导体基复合材料对三乙胺气敏性能的机理。展望了金属氧化物基三乙胺气敏材料的未来研究方向。
张静宜 , 孟哈日巴拉 , 张战营 . 金属氧化物半导体基三乙胺传感器研究进展[J]. 无机盐工业, 2021 , 53(12) : 67 -73 . DOI: 10.19964/j.issn.1006-4990.2020-0709
Triethylamine is a widely used volatile organic compound with toxic and side effects on human body,which needs long-term and effective monitoring.The development of stable,safe and reliable triethylamine gas sensor to realize the real-time detection of triethylamine gas concentration in the environment is very important for the safe storage,transportation and use of triethylamine.Metal oxide semiconductor based gas sensor has the advantages of simple preparation,low price and high response value.It plays an irreplaceable role in the detection of triethylamine gas.The latest research progress of triethylamine sensor based on metal oxide semiconductor was introduced.The recent research results on the preparation and properties of metal oxide semiconductor based triethylamine gas sensing materials,including doping,heterojunction,organic metal skele-ton and redox grapheme were reviewed.The mechanism of gas sensing properties of metal oxide semiconductor matrix compo-sites to triethylamine was discussed.And the future research direction of metal oxide-based triethylamine gassensitive materi-als was prospected.
Key words: metal oxide semiconductor; triethylamine; nanomaterials; gas sensors
[1] | XU H Y, JU D X, Li W R, et al. Superior triethylamine sensing pro- perties based on TiO2/SnO2 n-n heterojunction nanosheets directly grown on ceramic tubes[J]. Sensors and Actuators B:Chemical, 2016, 228(2):634-642. |
[2] | WU Y, ZHOU W, DONG W, et al. Temperature-controlled synjournal of porous CuO particles with different morphologies for highly sensitive detection of triethylamine[J]. Crystal Growth and Design, 2017, 17(4):2158-2165. |
[3] | JU D, XU H, XU Q, et al. High triethylamine-sensing properties of NiO/SnO2 hollow sphere P-N heterojunction sensors[J]. Sensors and Actuators B:Chemical, 2015, 215(8):39-44. |
[4] | LIU B, ZANG L, ZHAO H, et al. Synjournal and sensing properties of spherical flower like architectures assembled with SnO2 submicron rods[J]. Sensors and Actuators B:Chemical,2012,173(10):643-651. [5] CAI T,CHEN L,REN Q,et al.The biodegradation pathway of triet- hylamine and its biodegradation by immobilized arthrobacter proto- phormiae cells[J].Journal of Hazardous Materials, 2011, 186(1):59-66. |
[6] | JU D, XU H, QIU Z, et al. Near room temperature,fast-response, and highly sensitive triethylamine sensor assembled with Au-loaded ZnO/SnO2 core-shell nanorods on flat alumina substrates[J]. ACS Applied Materials & Interfaces, 2015, 7(34):19163-19171. |
[7] | LI Y W, LOU N, SUN G, et al. Synjournal of porous nanosheets-as- sembled ZnO/ZnCo2O4 hierarchical structure for TEA detection[J]. Sensors and Actuators B:Chemical, 2019, 287(5):199-208. |
[8] | SUI L L, SONG X X, CHENG X L, et al. An ultra-selective and ul- trasensitive TEA sensor based on α-MoO3 hierarchical nanostruc- tures and the sensing mechanism[J]. CrystEngComm, 2015, 17(34):6493-6503. |
[9] | MENG X N, YAO M X, MU S F, et al. Oxygen vacancies enhance triethylamine sensing properties of SnO2 nanoparticles[J]. Chemis- try Select, 2019, 4(38):11268-11274. |
[10] | MOORE W M, EDWARDS R J, BAVDA L T. An improved capillary gas chromatography method for triethylamine application to sara- floxacin rochloride and GnRH residual solvents testing[J]. Analyti- cal Letters, 1999, 32(13):2603-2612. |
[11] | ZHANG W H, ZHANG W D. Fabrication of SnO2-ZnO nanocompo- site sensor for selective sensing of trimethylamine and the freshne- ss of fishes[J]. Sensors and Actuators B:Chemical, 2008, 134(2):403-408. |
[12] | 孙冬杰, 段宏, 顾理. 毛细管色谱柱气相色谱法测定工作场所空气中三乙胺[J]. 中国卫生工程学, 2018, 17(3):339-340. |
[13] | 赵苏云, 徐森彪, 郑力行. 工作场所空气中三乙胺测定方法的研究[J]. 中国卫生检验杂志, 2012, 22(12):28-33. |
[14] | 朱佩华, 李珊珊. 用于检测三乙胺的有机无机复合薄膜及气敏传感器:中国, 110274936A[P]. 2019-09-24. |
[15] | XIE Y, DU J, ZHAO R, et al. Facile synjournal of hexagonal brick- shaped SnO2 and its gas sensing toward triethylamine[J]. Journal of Environmental Chemical Engineering, 2013, 1(4):1380-1384. |
[16] | WANG L, PENG R, CI L, et al. SnO2 microrods based triethylamine gas sensor[J]. IOP Conference Series:Materials and Engineering, 2020, 772(1):012-058. |
[17] | XUE D, WANG Y, CAO J, et al. Hydrothermal synjournal of CeO2- SnO2 nanoflowers for improving triethylamine gas sensing proper- ty[J]. Nanomaterials, 2018, 8(12).Doi: 10.3390/nano8121025. |
[18] | ZHU M, YANG T, ZHAI C, et al. Fast triethylamine gas sensing res- ponse properties of Ho-doped SnO2 nanoparticles[J]. Journal of Alloys and Compounds, 2020, 817(3).Doi: 10.1016/j.jallcom.2019.152724. |
[19] | BI W J, WANG W, LIU S T, et al. Synjournal of Rh-SnO2 nanosheets and ultra-high triethylamine sensing performance[J]. Journal of Alloys and Compounds, 2020, 817(10).Doi: 10.1016/j.jallcom.2019.152730. |
[20] | LI W R, XU H Y, YU H Q, et al. Different morphologies of ZnO and their triethylamine sensing properties[J]. Journal of Alloys and Co- mpounds, 2017, 706(6):461-469. |
[21] | LI Y W, TAO Z H, LUO N, et al. Single-crystalline porous nano- plates-assembled ZnO hierarchical microstructure with superior TEA sensing properties[J]. Sensors and Actuators B:Chemical, 2019, 290(7):607-615. |
[22] | GAO H J, MA Y Z, SONG P, et al. Cu-doped Fe2O3 porous spindles derived from metal-organic frameworks with enhanced sensitivity to triethylamine[J]. Materials Science in Semiconductor Processing, 2021, 123(3).Doi: 10.1016/j.mssp.2020.105510. |
[23] | ZHAI C, ZHAO Q, GU K, et al. Ultra-fast response and recovery of triethylamine gas sensors using a MOF-based ZnO/ZnFe2O4 struc- tures[J]. Journal of Alloys and Compounds, 2019, 784(5):660-667. |
[24] | SUN G, CHEN H L, LI Y W, et al. Synjournal and triethylamine sen- sing properties of mesoporous α-Fe2O3 microrods[J]. Materials Le- tters, 2016, 178(9):213-216. |
[25] | WEI Q, SUN J, SONG P, et al. MOF-derived α-Fe2O3 porous spin- dle combined with reduced graphene oxide for improvement of TEA sensing performance[J]. Sensors and Actuators B:Chemical, 2020. 304(5).Doi: 10.1016/j.snb.2019.127306. |
[26] | HU Q, HE J, CHANG J, et al. Needle-shaped WO3 nanorods for triethylamine gas sensing[J]. ACS Applied Nano Materials, 2020, 3(9):9046-9054. |
[27] | TOMER V K, DEVI S, MALIK R, et al. Highly sensitive and selec- tive volatile organic amine (VOA) sensors using mesoporous WO3- SnO2 nanohybrids[J]. Sensors and Actuators B:Chemical, 2016, 229(1):321-330. |
[28] | SUN Y, DONG Z, ZHANG D, et al. The fabrication and triethylami- ne sensing performance of In-MIL-68 derived In2O3 with porous lacunaris structure[J]. Sensors and Actuators B:Chemical, 2021, 326(1).Doi: 10.1016/j.snb.2020.128791. |
[29] | LIU X J, ZHAO K R, SUN X L, et al. Rational design of sensitivity enhanced and stability improved TEA gas sensor assembled with Pd nanoparticles-functionalized In2O3 composites[J]. Sensors and Actuators B:Chemical, 2019, 185(4):1-10. |
[30] | ZHENG L, MA T, ZHAO Y, et al. Synergy between Au and In2O3 microspheres:A superior hybrid structure for the selective and sen- sitive detection of triethylamine[J]. Sensors and Actuators B:Che- mical, 2019, 290(7):155-162. |
[31] | LI H, ZHANG N, ZHAO X, et al. Modulation of TEA and methanol gas sensing by ion-exchange based on a sacrificial template 3D di- amond-shaped MOF[J]. Sensors and Actuators B:Chemical, 2020, 315(7).Doi: 10.1016/j.snb.2020.128136. |
[32] | PEI H, LIN Z G, SONG P, et al. rGO-wrapped porous LaFeO3 mi-crospheres for high-performance triethylamine gas sensors[J]. Ce-ramics International, 2020, 46(7):9363-9369. |
[33] | YUAN Z Y, ZHAO J P, MENG F L, et al. Sandwich-like composites of double-layer Co3O4 and reduced graphene oxide and their sens- ing properties to volatile organic compounds[J]. Journal of Alloys and Compounds, 2019, 793(7):24-30. |
[34] | LI S S, ZHAO C R, ZHOU S, et al. Non-covalent interaction-driven self-assembly of perylene diimide on rGO for room-temperature sensing of triethylamine with enhanced immunity to humidity[J]. Chemical Engineering Journal, 2020, 385(4).Doi: 10.1016/j.cej.2019.123397. |
[35] | JIN H, BALA H, SUN G, et al. Facile synjournal of Co3O4 nanochains and their improved TEA sensing performance by decorating with Au nanoparticles[J]. Journal of Alloys and Compounds, 2019, 776(3):782-790. |
[36] | LUO N, SUN G, ZHANG B, et al. Improved TEA sensing performa- nce of ZnCo2O4 by structure evolution from porous nanorod to sin- gle-layer nanochain[J]. Sensors and Actuators B:Chemical, 2018, 277(12):544-554. |
[37] | 翟成博. 钨基和铁基氧化物半导体三乙胺气敏特性研究[D]. 长春:吉林大学, 2020. |
[38] | LIAO C Z, ZHANG M, NIU L Y, et al. Organic electrochemical tran- sistors with graphene-modified gate electrodes for highly sensitive and selective dopamine sensors[J]. Journal of Materials Chemistry B:Materials for Biology, 2014, 2:191-200. |
[39] | WANG Y, ZHAO D, ZHAO H, et al. Beyond equilibrium:Metal-or- ganic frameworks for molecular sieving and kinetic gas separa- tion[J]. Crystal Growth and Design, 2017, 17(5):2291-2308. |
/
〈 |
|
〉 |