无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
综述与专论

二维金属有机骨架材料制备技术的研究进展

  • 杜淼 ,
  • 牟玉金 ,
  • 王适豪 ,
  • 邱新建 ,
  • 王丽 ,
  • 姬长建
展开
  • 1.山东师范大学化学化工与材料科学学院,山东济南 250014
    2.齐鲁师范学院物理与电子工程学院

收稿日期: 2020-07-13

  网络出版日期: 2021-12-16

基金资助

国家自然科学基金项目(21501103);中国博士后科学基金项目(2016M592238);山东师范大学大学生创新创业训练计划(2021150124)

Research progress on preparation technology of two-dimensional metal-organic frameworks materials

  • Miao DU ,
  • Yujin MOU ,
  • Shihao WANG ,
  • Xinjian QIU ,
  • Li WANG ,
  • Changjian JI
Expand
  • 1. College of Chemistry,Chemical Engineering and Materials Science,Shandong Normal University,Jinan 250014,China
    2. College of Physics and Electronic Engineering,Qilu Normal University

Received date: 2020-07-13

  Online published: 2021-12-16

摘要

金属有机骨架(MOFs)材料是一种由金属离子或团簇通过配位键与有机配体自组装形成的有机-无机杂化多孔材料。二维MOFs材料具有比表面积大、孔隙率高、孔结构可调、电子传递能力强以及活性位点直接暴露在二维平面上等独特优点,这使得它们在气体吸附、催化、储能及传感等多个领域均有很好的应用前景。随着二维材料的迅速发展,越来越多的新型二维MOFs材料被合成制备出来。结合近几年国内外研究现状,综述了界面生长法、表面活性剂辅助法和剥离法等3种二维MOFs材料的制备方法,分析了各种方法的优点和不足之处,并对其未来的发展进行了展望。今后,开发一种成本低、产率高、易于工业化生产且环境友好的二维MOFs材料制备技术将是该研究领域的重点发展方向。

本文引用格式

杜淼 , 牟玉金 , 王适豪 , 邱新建 , 王丽 , 姬长建 . 二维金属有机骨架材料制备技术的研究进展[J]. 无机盐工业, 2021 , 53(12) : 49 -53 . DOI: 10.19964/j.issn.1006-4990.2020-0402

Abstract

Metal-organic frameworks(MOFs) are a kind of organic-inorganic hybrid porous materials formed by self-assembly of metal ions or clusters with organic ligands through coordination bonds.Two-dimensional(2D) MOFs have many unique ad-vantages,such as high specific surface,high porosity,adjustable porous structure,high conductivity and many active sites di-rectly exposed on the surface of the 2D plane.These characteristics make them have good application prospect in gas adsorp-tion,catalysis,energy storage,sensing and other fields.With the rapid development of 2D materials,more and more new 2D MOFs materials have been designed and synthesized.Combined with domestic and foreign researches in recent years,three main methods for preparing 2D MOFs were reviewed in this paper,which included interfacial growth method,surfactant-as-sisted method and exfoliation method.The advantages and disadvantages of these methods were analyzed and compared.Final-ly,the research progress of 2D MOFs was introduced and its future development was also prospected.The preparation of 2D MOFs with low cost,high yield,easy industrialization and environmental friendliness was the focus of research in the future.

参考文献

[1] ZHOU H C, KITAGAWA S. Metal-organic frameworks(MOFs)[J]. Chemical Society Reviews, 2014, 43:5415-5418.
[2] ZHOU H C, LONG J R, YAGHI O M. Introduction to metal-organic frameworks[J]. Chemical Reviews, 2012, 112:673-674.
[3] XIAO X, ZOU L L, PANG H, et al. Synjournal of micro/nanoscaled metal-organic frameworks and their direct electrochemical applica- tions[J]. Chemical Society Reviews, 2020, 49(1):301-331.
[4] WU D, LIU J, JIN J, et al. New Doubly Interpenetrated MOF with [Zn4O] clusters and its doped isomorphic MOF:Sensing,dye,and gas adsorption capacity[J]. Crystal Growth & Design, 2019, 19(11):6774-6783.
[5] CORMA A, GARCÍA H, LLABRÉS I XAMENA F X. Engineering metal organic frameworks for heterogeneous catalysis[J]. Chemical Reviews, 2010, 110(8):4606-4655.
[6] LIANG Z B, QU C, GUO W H, et al. Pristine metal-organic frame- works and their composites for energy storage and conversion[J]. Advanced Materials, 2018, 30(37).Doi: 10.1002/adma.201702891.
[7] 杜淼, 张光荣. 石墨烯的制备及其应用研究进展[J]. 无机盐工业, 2019, 51(3):12-15.
[8] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
[9] LIN Y, WILLIAMS T V, CONNELL J W. Soluble,exfoliated hexago- nal boron nitride nanosheets[J]. The Journal of Physical Chemistry Letters, 2010, 1(1):277-283.
[10] DU M, WU Y Z, HAO X P. A facile chemical exfoliation method to obtain large size boron nitride nanosheets[J]. CrystEngComm, 2013, 15(9):1782-1786.
[11] CHHOWALLA M, SHIN H S, EDA G, et al. The chemistry of two- dimensional layered transition metal dichalcogenide nanoshee- ts[J]. Nature Chemistry, 2013, 5(4):263-275.
[12] ASHWORTH D J, FOSTER J A. Metal-organic framework nano- sheets(MONs):A new dimension in materials chemistry[J]. Jour- nal of Materials Chemistry A, 2018, 6(34):16292-16307.
[13] ZHENG Y, ZHENG S S, XU Y X, et al. Ultrathin two-dimensional cobalt-organic frameworks nanosheets for electrochemical energy storage[J]. Chemical Engineering Journal, 2019, 373:1319-1328.
[14] BAI X J, CHEN D, LI L L, et al. Fabrication of MOF thin films at miscible liquid-liquid interface by spray method[J]. ACS Applied Materials & Interfaces, 2018, 10(31):25960-25966.
[15] ZHAO M T, WANG Y X, MA Q L, et al. Ultrathin 2D metal-orga- nic framework nanosheets[J]. Advanced Materials, 2015, 27(45):7372-7378.
[16] HAO G P, TANG C, ZHANG E, et al. Thermal exfoliation of layered metal-organic frameworks into ultrahydrophilic graphene stacks and their applications in Li-S batteries[J]. Advanced Materials, 2017, 29(37).Doi: 10.1002/adma.201702829.
[17] ZHAO M T, LU Q P, MA Q L, et al. Two-dimensional metal-organ- ic framework nanosheets[J]. Small Methods, 2017, 1(1/2).Doi: 10.1002/smtd.201600030.
[18] AMELOOT R, VERMOORTELE F, VANHOVE W, et al. Interfaci- al synjournal of hollow metal-organic framework capsules demon- strating selective permeability[J]. Nature Chemistry, 2011, 3(5):382-387.
[19] PENG Y, LI Y S, BAN Y J, et al. Metal-organic framework nano- sheets as building blocks for molecular sieving membranes[J]. Science, 2014, 346(6215):1356-1359.
[20] YUAN M W, WANG R, FU W B, et al. Ultrathin Two-dimensional metal-organic framework nanosheets with the inherent open active sites as electrocatalysts in aprotic Li-O2 Batteries[J]. ACS App- lied Materials & Interfaces, 2019, 11(12):11403-11413.
[21] ZHENG Y S, SUN F Z, HAN X, et al. Recent progress in 2D metal- organic frameworks for optical applications[J]. Advanced Optical Materials, 2020, 8(13).Doi: 10.1002/adom.202000110.
[22] ZHAO S L, WANG Y, DONG J C, et al. Ultrathin metalorganic fra- mework nanosheets for electrocatalytic oxygen evolution[J]. Na- ture Energy, 2016, 1(12).Doi: 10.1038/nenergy.2016.184.
[23] SAKAIDA S, OTSUBO K, SAKATA O, et al. Crystalline coordina- tion framework endowed with dynamic gate-opening behaviour by being downsized to a thin film[J]. Nature Chemistry, 2016, 8(4):377-383.
[24] WU G D, HUANG J H, ZANG Y, et al. Porous field-effect transis- tors based on a semiconductive metal-organic framework[J]. Jour- nal of the American Chemical Society, 2017, 139(4):1360-1363.
[25] LAHIRI N, LOTFIZADEH N, TSUCHIKAWA R, et al. Hexaamino- benzene as a building block for a family of 2D coordination poly- mers[J]. Journal of the American Chemical Society, 2017, 139(1):19-22.
[26] YAO M S, LV X J, FU Z H, et al. Layer-by-layer assembled con- ductive metal-organic framework nanofilms for room-temperature chemiresistive sensing[J]. Angewandte Chemie International Edition, 2017, 56(52):16510-16514.
[27] RODENAS T, LUZ I, PRIETO G, et al. Metal-organic framework nanosheets in polymer composite materials for gas separation[J]. Nature Materials, 2015, 14(1):48-55.
[28] HU Z G, MAHDI E M, PENG Y W, et al. Kinetically controlled sy- njournal of two-dimensional Zr/Hf metal-organic framework nano- sheets via a modulated hydrothermal approach[J]. Journal of Materials Chemistry A, 2017, 5:8954-8963.
[29] ZHAO K M, LIU S Q, YE G Y, et al. High-yield bottom-up synthe- sis of 2D metal-organic frameworks and their derived ultrathin car- bon nanosheets for energy storage[J]. Journal of Materials Chemistry A, 2018, 6(5):2166-2175.
[30] WANG Y X, ZHAO M T, PING J F, et al. Bioinspired design of ul- trathin 2D bimetallic metal-organic-framework nanosheets used as biomimetic enzymes[J]. Advanced Materials, 2016, 28(21):4149-4155.
[31] CAO F F, ZHAO M T, YU Y F, et al. Synjournal of two-dimensional CoS1.097/nitrogen-doped carbon nanocomposites using metalorganic framework nanosheets as precursors for supercapacitor applica- tion[J]. Journal of the American Chemical Society, 2016, 138(22):6924-6927.
[32] ZUO Q, LIU T T, CHEN C S, et al. Ultrathin metal-organic frame- work nanosheets with ultrahigh loading of single Pt atoms for effi- cient visible-light-driven photocatalytic H2 evolution[J]. Angewan- dte Chemie International Edition, 2019, 58(30):10198-10203.
[33] DING Y J, CHEN Y P, ZHANG X L, et al. Controlled intercalation and chemical exfoliation of layered metal-organic frameworks us- ing a chemically labile intercalating agent[J]. Journal of the Am- erican Chemical Society, 2017, 139(27):9136-9139.
[34] LI C, YANG Q, SHEN M, et al. The electrochemical Na intercala- tion/extraction mechanism of ultrathin cobalt(Ⅱ) terephthalate- based MOF nanosheets revealed by synchrotron X-ray absorption spectroscopy[J]. Energy Storage Materials, 2018, 14:82-89.
[35] JIAN M P, QIU R S, XIA Y, et al. Ultrathin water-stable metal-or- ganic framework membranes for ion separation[J]. Science Advan- ces, 2020, 6(23):1-9.
[36] LIU Q, LI X F, WEN Y H, et al. Twofold interpenetrated 2D MOF nanosheets generated by an instant in situ exfoliation method:Mo- rphology control and fluorescent sensing[J]. Advances Materials, 2020, 7(16).Doi: 10.1002/admi.202000813.
[37] WANG M C, SHI H H, ZHANG P P, et al. Phthalocyanine-based 2D conjugated metal-organic framework nanosheets for high-per- formance micro-supercapacitors[J]. Advances Functional Materials, 2020, 30(30).Doi: 10.1002/adfm.202002664.
[38] HAN L J, ZHENG D, CHEN S G, et al. A highly solvent-stable me- tal-organic framework nanosheet:Morphology control,exfoliation,and luminescent property[J]. Small, 2018, 14(17).Doi: 10.1002/smll.201703873.
文章导航

/