无机固体吸附剂在二氧化碳捕集应用中的研究进展
收稿日期: 2021-09-17
网络出版日期: 2021-12-16
Research progress of inorganic solid adsorbents in carbon dioxide capture
Received date: 2021-09-17
Online published: 2021-12-16
随着全球气候变暖,二氧化碳的捕集、利用和封存(CCUS)逐渐成为科学界和工业界的研究热点。CCUS的关键是选择性地从气体混合物中捕集二氧化碳。目前二氧化碳捕集技术包括化学吸收、膜分离、吸附和低温分离等。吸附法是利用吸附剂对不同气体的吸附能力差异来进行二氧化碳捕集。综述了分子筛、介孔二氧化硅、黏土及多孔碳等无机固体吸附剂在二氧化碳捕集应用中的研究进展。对比了不同改性方法对吸附剂吸附二氧化碳性能的影响。从应用角度来看,分子筛、介孔二氧化硅、黏土具有潜在的成本效益,但仍需在工程设计开发方面得以进一步发展,以适用于不同应用需求的二氧化碳捕集。
郭伟 , 石涵 , 袁标 . 无机固体吸附剂在二氧化碳捕集应用中的研究进展[J]. 无机盐工业, 2021 , 53(12) : 29 -34 . DOI: 10.19964/j.issn.1006-4990.2021-0567
With global warming,carbon dioxide capture,utilization and storage(CCUS) has gradually become a research hotspot in the field of science and industry.The key of CCUS is to capture carbon dioxide from gas mixtures selectively.At present,carbon dioxide capture technology includes chemical absorption,membrane separation,adsorption and low tempera-ture separation.The adsorption method uses the difference of adsorption capacity of adsorbent for different gases to remove carbon dioxide.The research progress of inorganic solid adsorbents such as zeolite,mesoporous silica,clay and porous carbon in carbon dioxide capture was reviewed.The effect of different modification methods on the adsorption properties of carbon dioxide of the adsorbent was compared.From the perspective of application,zeolite,mesoporous silica and clay had potential cost-effectiveness,but they should be further developed in engineering design and development to meet the carbon dioxide capture requirements of different applications.
Key words: adsorbent; carbon dioxide; zeolite; mesoporous silica; clay; porous carbon
[1] | SZULEJKO J E, KUMAR P, DEEP A, et al. Global warming projec- tions to 2100 using simple CO2 greenhouse gas modeling and com- ments on CO2 climate sensitivity factor[J]. Atmospheric Pollution Research, 2017, 8(1):136-140. |
[2] | ANDERSON T R, HAWKINS E, JONES P D. CO2,the greenhouse effect and global warming:From the pioneering work of Arrhenius and Callendar to today′s Earth system models[J]. Endeavour, 2016, 40(3):178-187. |
[3] | 王建行, 赵颖颖, 李佳慧, 等. 二氧化碳的捕集、固定与利用的研究进展[J]. 无机盐工业, 2020, 52(4):12-17. |
[4] | BOOT-HANDFORD M E, ABANADES J C, ANTHONY E J, et al. Carbon capture and storage update[J]. Energy & Environmental Sci- ence, 2014, 7(1):130-189. |
[5] | KÄTELHÖN A, MEYS R, DEUTZ S, et al. Climate change mitigation potential of carbon capture and utilization in the chemical indust- ry[J]. Proceedings of the National Academy of Sciences, 2019, 116(23):11187-11194. |
[6] | BUI M, ADJIMAN C S, BARDOW A, et al. Carbon capture and stor- age(CCS):The way forward[J]. Energy & Environmental Science, 2018, 11(5):1062-1176. |
[7] | HAIDER M B, HUSSAIN Z, KUMAR R. CO2 absorption and kinetic study in ionic liquid amine blends[J]. Journal of Molecular Li- quids, 2016, 224:1025-1031. |
[8] | PETERS L, HUSSAIN A, FOLLMANN M, et al. CO2 removal from natural gas by employing amine absorption and membrane technolo- gy-A technical and economical analysis[J]. Chemical Engineering Journal, 2011, 172(2):952-960. |
[9] | VEAWAB A, TONTIWACHWUTHIKUL P, CHAKMA A. Corrosion behavior of carbon steel in the CO2 absorption process using aque- ous amine solutions[J]. Industrial & Engineering Chemistry Rese- arch, 1999, 38(10):3917-3924. |
[10] | HONG S-M, JANG E, DYSART A D, et al. CO2 capture in the su- stainable wheat-derived activated microporous carbon compart- ments[J]. Scientific Reports, 2016, 6(1):1-10. |
[11] | TRICKETT C A, HELAL A, AL-MAYTHALONY B A, et al. The chemistry of metal-organic frameworks for CO2 capture,regenera- tion and conversion[J]. Nature Reviews Materials, 2017, 2(8):1-16. |
[12] | 柴彤, 赵瑞红, 栗明宏, 等. 氨基改性有序介孔氧化铝吸附二氧化碳性能研究[J]. 无机盐工业, 2016, 48(12):14-18. |
[13] | 周静, 邹洪涛, 邢焰, 等. 磷石膏制备纳米氧化钙基二氧化碳吸附剂工艺的优化[J]. 无机盐工业, 2016, 48(10):73-76. |
[14] | KACEM M, PELLERANO M, DELEBARRE A. Pressure swing adsorption for CO2/N2 and CO2/CH4 separation:Comparison between activated carbons and zeolites performances[J]. Fuel Processing Technology, 2015, 138:271-283. |
[15] | GARCÍA S, GIL M V, MARTÍN C F, et al. Breakthrough adsorption study of a commercial activated carbon for pre-combustion CO2 capture[J]. Chemical Engineering Journal, 2011, 171(2):549-556. |
[16] | BEN-MANSOUR R, HABIB M A, BAMIDELE O E, et al. Carbon capture by physical adsorption:Materials,experimental investiga- tions and numerical modeling and simulations-A review[J]. App- lied Energy, 2016, 161:225-255. |
[17] | ALABADI A, RAZZAQUE S, YANG Y, et al. Highly porous activat- ed carbon materials from carbonized biomass with high CO2 captur- ing capacity[J]. Chemical Engineering Journal, 2015, 281:606-612. |
[18] | BHATT P M, BELMABKHOUT Y, CADIAU A, et al. A fine-tuned fluorinated MOF addresses the needs for trace CO2 removal and air capture using physisorption[J]. Journal of the American Chemical Society, 2016, 138(29):9301-9307. |
[19] | BELMABKHOUT Y, GUILLERM V, EDDAOUDI M. Low co- ncentration CO2 capture using physical adsorbents:Are metal-or- ganic frameworks becoming the new benchmark materials?[J]. Chemical Engineering Journal, 2016, 296:386-397. |
[20] | SAI BHARGAVA REDDY M, PONNAMMA D, SADASIVUNI K K, et al. Carbon dioxide adsorption based on porous materials[J]. RSC Advances, 2021, 11(21):12658-12681. |
[21] | AZMI A A, AZIZ M A A. Mesoporous adsorbent for CO2 capture application under mild condition:A review[J]. Journal of Environ- mental Chemical Engineering, 2019, 7(2).Doi: 10.1016/j.jece.2019.103022. |
[22] | LIU R S, SHI X D, WANG C T, et al. Advances in post-combus- tion CO2 capture by physical adsorption:From materials innovation to separation practice[J]. ChemSusChem, 2021, 14(6):1428-1471. |
[23] | HAO G-P, LI W-C, QIAN D, et al. Structurally designed synjournal of mechanically stable poly(benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents[J]. Journal of the American Chemical Society, 2011, 133(29):11378-11388. |
[24] | LIU Q, HE P, QIAN X, et al. Enhanced CO2 adsorption performance on hierarchical porous ZSM-5 zeolite[J]. Energy & Fuels, 2017, 31(12):13933-13941. |
[25] | KONGNOO A, TONTISIRIN S, WORATHANAKUL P, et al. Sur- face characteristics and CO2 adsorption capacities of acid-activated zeolite 13X prepared from palm oil mill fly ash[J]. Fuel, 2017, 193:385-394. |
[26] | BARTHOMEUF D. Framework induced basicity in zeolites[J]. Mi- croporous and Mesoporous Materials, 2003, 66(1):1-14. |
[27] | BARTHOMEUF D. Conjugate acid-base pairs in zeolites[J]. The Journal of Physical Chemistry, 1984, 88(1):42-45. |
[28] | WALTON K S, ABNEY M, BDOUGLAS LEVAN M. CO2 ad- sorption in Y and X zeolites modified by alkali metal cation exch- ange[J]. Microporous and Mesoporous Materials, 2006, 91(1):78-84. |
[29] | PHAM T D, HUDSON M R, BROWN C M, et al. On the structure- property relationships of cation-exchanged ZK-5 zeolites for CO2 adsorption[J]. ChemSusChem, 2017, 10(5):946-957. |
[30] | YANG J, SHANG H, KRISHNA R, et al. Adjusting the proportions of extra-framework K+ and Cs+ cations to construct a“molecular gate” on ZK-5 for CO2 removal[J]. Microporous and Mesoporous Materi- als, 2018, 268:50-57. |
[31] | SUN M, GU Q, HANIF A, et al. Transition metal cation-exchanged SSZ-13 zeolites for CO2 capture and separation from N2[J]. Che- mical Engineering Journal, 2019, 370:1450-1458. |
[32] | SU F, LU C, KUO S-C, et al. Adsorption of CO2 on amine-functio- nalized Y-type zeolites[J]. Energy & Fuels, 2010, 24(2):1441-1448. |
[33] | MURGE P, DINDA S, ROY S. Zeolite-based sorbent for CO2 capture:Preparation and performance evaluation[J]. Langmuir, 2019, 35(46):14751-14760. |
[34] | WANG Y, DU T, QIU Z, et al. CO2 adsorption on polyethylenimine- modified ZSM-5 zeolite synthesized from rice husk ash[J]. Materi- als Chemistry and Physics, 2018, 207:105-113. |
[35] | CHEN C, KIM S-S, CHO W-S, et al. Polyethylenimine-incorpora- ted zeolite 13X with mesoporosity for post-combustion CO2 cap- ture[J]. Applied Surface Science, 2015, 332:167-171. |
[36] | MADDEN D, CURTIN T. Carbon dioxide capture with amino- functionalised zeolite-β:A temperature programmed desorption study under dry and humid conditions[J]. Microporous and Meso- porous Materials, 2016, 228:310-317. |
[37] | SANZ R, CALLEJA G, ARENCIBIA A, et al. Amino functionalized mesostructured SBA-15 silica for CO2 capture:Exploring the rela- tion between the adsorption capacity and the distribution of amino groups by TEM[J]. Microporous and Mesoporous Materials, 2012, 158:309-317. |
[38] | SON W-J, CHOI J-S, AHN W-S. Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materi- als[J]. Microporous and Mesoporous Materials, 2008, 113(1):31-40. |
[39] | JAHANDAR L M, SAYARI A. CO2 capture using triamine-gra- fted SBA-15:The impact of the support pore structure[J]. Chemi- cal Engineering Journal, 2018, 334:1260-1269. |
[40] | SANZ-PÉREZ E S, ARENCIBIA A, CALLEJA G, et al. Tuning the textural properties of HMS mesoporous silica.Functionalization to- wards CO2 adsorption[J]. Microporous and Mesoporous Materials, 2018, 260:235-244. |
[41] | SUBAGYONO D J N, LIANG Z, KNOWLES G P, et al. Amine mo- dified mesocellular siliceous foam (MCF) as a sorbent for CO2[J]. Chemical Engineering Research and Design, 2011, 89(9):1647-1657. |
[42] | D′ALESSANDRO D M, SMIT BLONG J R. Carbon dioxide capture:Prospects for new materials[J]. Angewandte Chemie In- ternational Edition, 2010, 49(35):6058-6082. |
[43] | IRANI M, FAN M, ISMAIL H, et al. Modified nanosepiolite as an inexpensive support of tetraethylenepentamine for CO2 sorption[J]. Nano Energy, 2015, 11:235-246. |
[44] | CECILIA J A, VILARRASA-GARCíA E, CAVALCANTE C L, et al. Evaluation of two fibrous clay minerals(sepiolite and palygors- kite) for CO2 Capture[J]. Journal of Environmental Chemical En- gineering, 2018, 6(4):4573-4587. |
[45] | WANG W, XIAO J, WEI X, et al. Development of a new clay sup- ported polyethylenimine composite for CO2 capture[J]. Applied Energy, 2014, 113:334-341. |
[46] | GÓMEZ-POZUELO G, SANZ-PÉREZ E S, ARENCIBIA A, et al. CO2 adsorption on amine-functionalized clays[J]. Microporous and Mesoporous Materials, 2019, 282:38-47. |
[47] | VILARRASA-GARCÍA E, CECILIA J A, AZEVEDO D C S, et al. Evaluation of porous clay heterostructures modified with amine species as adsorbent for the CO2 capture[J]. Microporous and Me- soporous Materials, 2017, 249:25-33. |
[48] | WANG J, HEERWIG A, LOHE M R, et al. Fungi-based porous carbons for CO2 adsorption and separation[J]. Journal of Materials Chemistry, 2012, 22(28):13911-13913. |
[49] | TIAN W, ZHANG H, SUN H, et al. Heteroatom(N or N-S)-doping induced layered and honeycomb microstructures of porous carbons for CO2 capture and energy applications[J]. Advanced Functional Materials, 2016, 26(47):8651-8661. |
[50] | GUO Y, TAN C, SUN J, et al. Porous activated carbons derived from waste sugarcane bagasse for CO2 adsorption[J]. Chemical En- gineering Journal, 2020, 381.Doi: 10.1016/j.cej.2019.122736. |
[51] | SEVILLA M, FUERTES A B. Sustainable porous carbons with a superior performance for CO2 capture[J]. Energy & Environmen- tal Science, 2011, 4(5):1765-1771. |
[52] | WANG H, XU C, ZHOU Y, et al. Fabrication of hierarchical N-do- ped carbon nanotubes for CO2 adsorption[J]. Nano, 2019, 14(6).Doi: 10.1142/S1793292019500723. |
[53] | MISHRA A K, RAMAPRABHU S. Carbon dioxide adsorption in graphene sheets[J]. AIP Advances, 2011, 1(3).Doi: 10.1063/1.3638178. |
/
〈 |
|
〉 |