无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
催化材料

BiOBr/UiO-66-(COOH)2复合材料制备及光催化性能研究

  • 熊芸 ,
  • 陈新 ,
  • 张静 ,
  • 邓妮艳 ,
  • 张权 ,
  • 刘生鹏 ,
  • 孙国锋
展开
  • 1.武汉工程大学磷资源开发利用教育部工程研究中心,湖北武汉 430205
    2.武汉工程大学化工与制药学院
熊芸(1981— ),女,副教授,硕士研究生导师,研究方向为光催化、膜分离技术;E-mail: xiongyun@vip.163.com

收稿日期: 2021-04-15

  网络出版日期: 2021-12-16

基金资助

磷资源开发利用教育部工程研究中心开放基金(LKF201902);武汉工程大学研究生教育创新基金(CX2019025)

Preparation and photocatalytic properties of BiOBr/UiO-66-(COOH)2 composite materials

  • Yun XIONG ,
  • Xin CHEN ,
  • Jing ZHANG ,
  • Niyan DENG ,
  • Quan ZHANG ,
  • Shengpeng LIU ,
  • Guofeng SUN
Expand
  • 1. Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education,Wuhan Institute of Technology,Wuhan 430205,China
    2. School of Chemical Engineering and Pharmacy,Wuhan Institute of Technology

Received date: 2021-04-15

  Online published: 2021-12-16

摘要

为提高传统光催化材料BiOBr和UiO-66-(COOH)2的性能和对可见光的吸收强度,以及它们的光催化活性和光催化效率,通过简单的溶剂热法制备了一种新型复合光催化剂BiOBr/UiO-66-(COOH)2。运用X射线衍射光谱(XRD)、扫描电镜(SEM)、透射电镜(TEM)、红外光谱(FT-IR)、光致发光(PL)光谱、N2吸附-脱附、紫外-可见漫反射光谱(UV-Vis DRS)和电化学等手段对其进行表征,并对其光催化降解甲基橙的效率进行了研究。结果表明,相对于单一的BiOBr材料,与UiO-66-(COOH)2复合之后的BiOBr/UiO-66-(COOH)2催化剂保留了原有材料的结构,相应的比表面积增大,对可见光的吸收强度增强。将BiOBr/UiO-66-(COOH)2用于光催化降解甲基橙,在氙灯照射120 min后,甲基橙的降解率达到70%,分别约为纯UiO-66-(COOH)2和BiOBr的3.68倍和1.43倍,光催化活性显著提高,光催化降解过程符合一级反应动力学规律。

本文引用格式

熊芸 , 陈新 , 张静 , 邓妮艳 , 张权 , 刘生鹏 , 孙国锋 . BiOBr/UiO-66-(COOH)2复合材料制备及光催化性能研究[J]. 无机盐工业, 2021 , 53(12) : 150 -155 . DOI: 10.19964/j.issn.1006-4990.2021-0138

Abstract

In order to improve the performance of BiOBr and UIO-66-(COOH)2 photocatalytic materials and the absorption intensity of visible light,as well as their photocatalytic activity and efficiency,a new type of composite photocatalyst BiOBr/UiO-66-(COOH)2 was prepared by simple solvothermal method.The sample was characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),fourier transform infrared spectroscopy(FT-IR),photoluminescence(PL),N2 absorption-desorption,UV-visual diffuse reflectance spectroscopy(UV-vis DRS) and elec-trochemistry.The photocatalytic activity of BiOBr/UiO-66-(COOH)2 was investigated in the degradation efficiency of methyl orange.The results showed that after modifying BiOBr with UiO-66-(COOH)2,BiOBr/UiO-66-(COOH)2 retained the struc-ture of original materials.Moreover,with the increasing of the corresponding specific surface area,the visible light absorption of the sample increased.Under xenon lamp irradiation for 120 minutes,the degradation rate of BiOBr/UiO-66-(COOH)2 to methyl orange was as high as 70%,which was about 3.68 times and 1.43 times of pure UiO-66-(COOH)2 and BiOBr.The activity of the composite was significantly improved,and the photocatalytic degradation process was conformed to the law of first-order reaction kinetics.

参考文献

[1] ZHAO Wanyue, DING Tong, WANG Yating, et al. Decorating Ag/ AgCl on UiO-66-NH2:Synergy between Ag plasmons and hetero- structure for the realization of efficient visible light photocataly- sis[J]. Chinese Journal of Catalysis, 2019, 40(8):1187-1197.
[2] LIMVORAPITUX Rungmai, CHEN Haoyuan, MENDONCA Ma- tthew, et al. Elucidating the mechanism of the UiO-66-catalyzed sulfide oxidation:activity and selectivity enhancements through ch- anges in the node coordination environment and solvent[J]. Cataly- sis Science & Technology, 2018, 9(2):327-335.
[3] LUO Tian, ZHANG Jianling, LI Wei, et al. Metal-organic framework stabilized CO2/water interfacial route for photocatalytic CO2 conver- sion[J]. ACS Applied Materials & Interfaces, 2017, 9:41594-41598.
[4] 陈小浪. 新型光催化纳米材料的制备及其氧化NO和产氢性能的研究[D]. 上海:上海师范大学, 2018.
[5] 冯飞, 李书文, 汪铁林, 等. 片状铋/钒酸铋复合催化剂的制备及其光催化性能[J]. 无机盐工业, 2021, 53(1):107-112.
[6] 冯胜雷, 刘方华, 付翔, 等. TiO2/g-C3N4光催化材料的制备及其可见光降解性能研究[J]. 化工新型材料, 2020, 48(11):99-102,107.
[7] CAO Jing, XU Benyan, LUO Bangde, et al. Novel BiOI/BiOBr het- erojunction photocatalysts with enhanced visible light photocatalytic properties[J]. Catalysis Communications, 2011, 13(1):63-68.
[8] GUO Junqiu, LIAO Xin, LEE Ming-Hsien, et al. Experimental and DFT insights of the Zn-doping effects on the visible-light photoca- talytic water splitting and dye decomposition over Zn-doped BiOBr photocatalysts[J]. Applied Catalysis B:Environmental, 2018, 243:502-512.
[9] KONG Liang, JIANG Zheng, LAI Henry H, et al. Unusual reactivity of visible-light-responsive AgBr-BiOBr heterojunction photocataly- sts[J]. Journal of Catalysis, 2012, 293:116-125.
[10] ZHANG Xinxin, LI Ruiping, JIA Manke, et al. Degradation of cipro- floxacin in aqueous bismuth oxybromide (BiOBr) suspensions un- der visible light irradiation:A direct hole oxidation pathway[J]. Chemical Engineering Journal, 2015, 274:290-297.
[11] ZHANG Xi, ZHANG Lizhi, XIE Tengfeng, et al. Low-temperature synjournal and high visible-light-induced photocatalytic activity of BiOI/TiO2 heterostructures[J]. The Journal of Physical Chemistry C, 2009, 113(17):7371-7378.
[12] 于吉行, 俞俊, 薛晓雅, 等. 金属有机骨架UiO-66在催化领域的应用[J]. 化工进展, 2019, 38(增刊1):144-151.
[13] WANG Rong, GU Lina, ZHOU Jianjian, et al. Quasi-polymeric me- tal-organic framework UiO-66/g-C3N4 heterojunctions for enhan- ced photocatalytic hydrogen evolution under visible light irradia- tion[J]. Advanced Materials Interfaces, 2015, 2(10).Doi: 10.1002/admi.201500037.
[14] YE Liqun, LIU Jinyan, JIANG Zhuo, et al. Facets coupling of BiOBr- g-C3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity[J]. Applied Catalysis B:Environmental, 2013, 142-143(Complete):1-7.
[15] CHAVAN Sachin M, SHEARER Greig C, SVELLE Stian, et al. Sy njournal and characterization of amine-functionalized mixed-ligand metal-organic frameworks of UiO-66 topology[J]. Inorganic Chemi- stry, 2014, 53(18):9509-9523.
[16] SINGH Pardeep, SONU, RAIZADA Pankaj, et al. Enhanced photo- catalytic activity and stability of AgBr/BiOBr/graphene heterojunc- tion for phenol degradation under visible light[J]. Journal of Saudi Chemical Society, 2019, 23(5):586-599.
[17] RAGON Florence, CAMPO Betiana, YANG Qingyuan, et al. Acic- functionalized UiO-66(Zr) MOFs and their evolution after intra- framework cross-linking:Structural features and sorption properti- es[J]. Journal of Materials Chemistry A, 2015, 3(7):3294-3309.
[18] 任勇, 潘越, 刘德蓉, 等. Rh/UiO-66-NH2催化1,4-丁炔二醇加氢性能研究[J]. 应用化工, 2019, 48(1):136-139,144.
[19] 朱帅汝. BiOBr/MOF复合材料的制备与光催化性能的研究[D]. 宁波:宁波大学, 2018.
[20] 杨黄根, 陈渊, 王治伟, 等. 多孔柿饼状BiOBr光催化剂的简易溶剂热法合成[J]. 无机化学学报, 2020, 36(2):333-344.
[21] ZHU Guiliang, SHENG Feng, SHAO Cong, et al. One-pot synjournal of C-dots modified TiO2 nanosheets/UiO-66-NH2 with improved photocatalytic activity under visible light[J]. Ceramics Internatio- nal, 2020, 46(2):2530-2537.
[22] YAN Yuxiang, YANG Hua, YI Zao, et al. Direct Z-scheme CaTiO3@BiOBr composite photocatalysts with enhanced photodegradation of dyes[J]. Environmental Science and Pollution Research, 2019, 26(28):29020-29031.
文章导航

/