收稿日期: 2021-05-08
网络出版日期: 2021-12-16
基金资助
国家自然科学基金(51774191);国家自然科学基金(21978153)
Rule of hydrothermal hydrolysis of Mg/Al-bearing TiOSO4 solution
Received date: 2021-05-08
Online published: 2021-12-16
探究了含镁铝杂质硫酸氧钛溶液[1.0 mol/L TiOSO4+0.5 mol/L MgSO4+0.25 mol/L Al2(SO4)3+2.4 mol/L H2SO4]的水热水解规律。热力学计算表明:110~150 ℃,加入MgSO4 和Al2(SO4)3的总体效应使钛的理论水解率略有降低[150 ℃时,纯硫酸氧钛溶液和含镁铝杂质硫酸氧钛溶液的理论水解率分别为99.8%和99.7%,镁铝杂质分别以MgSO4(aq)和Al(OH)2+为主];升高温度有利于含钛组分水解,从110 ℃升高到150 ℃含镁铝杂质硫酸氧钛溶液的理论水解率由99.1%升高到99.7%。实验结果表明:加入MgSO4 和Al2(SO4)3后钛水解率略有降低(150 ℃时,纯硫酸氧钛溶液和含镁铝杂质硫酸氧钛溶液的水解率分别为99.2%和98.3%),升高温度可显著强化含镁铝杂质硫酸氧钛溶液的水解(110 ℃→150 ℃,68.6%→98.3%),与热力学计算结果相符。在150 ℃水热反应10 h,可制得原始粒径为100~300 nm、团聚粒径为1~3 μm的不规则状偏钛酸,含钛组分水解率达到98.3%。
杨卓颖 , 杨帆 , 易美桂 , 向兰 . 含镁铝杂质硫酸氧钛溶液水热水解规律[J]. 无机盐工业, 2021 , 53(12) : 113 -116 . DOI: 10.19964/j.issn.1006-4990.2021-0145
The rule of hydrothermal hydrolysis of impurity-bearing titanyl sulfate solution containing [1.0 mol/L TiOSO4+0.5 mol/L MgSO4+0.25 mol/L Al2(SO4)3+2.4 mol/L H2SO4] was studied.Thermodynamic analysis indicated that the presence of MgSO4 and Al2(SO4)3 (Mg/Al impurities mainly as MgSO4(aq) and Al(OH)2+ at 110~150 ℃) led to the slight decrease of the theoretical hydrolysis ratios of titanium-bearing spices(150 ℃,99.8%→99.7%),while the increase of temperature favored the hydrolysis of Ti-bearing spices,from 110 ℃ to 150 ℃ leading to the increase of the theoretical hydrolysis ratio of titanium-bearing spices from 99.1% up to 99.7%.The experimental research indicated that the presence of MgSO4 and Al2(SO4)3 led to the slight decrease of the hydrolysis of Ti-bearing spices(150 ℃,99.2%→98.3%),and the increase of temperature favored the hydrolysis of Ti-bearing spices(110→150 ℃,68.6%→98.3%),which was in good agreement with the thermodynamic analysis results.The agglomerated metatitanic acid particles(with a particle size of 1~3 μm) composed of the small primary particles(with a particle size of 100~300 nm) formed and the corresponding hydrolysis ratio of Ti-bearing spices reached up to 98.3% after treating the impurity-bearing titanyl sulfate solution at 150 ℃ for 10 h.
[1] | 刘帅, 张宗旺, 张建良, 等. 高钛型高炉渣钛提取工艺研究现状及发展展望[J]. 中国冶金, 2020, 30(3):1-7. |
[2] | 吴胜利. 高钛高炉渣综合利用的研究进展[J]. 中国资源综合利用, 2013, 31(2):39-43. |
[3] | 郝百川, 李子越, 贾东方, 等. 含钛高炉渣的综合利用[J]. 矿产综合利用, 2020(6):1-6. |
[4] | 黄家旭, 杨仰军, 陆平, 等. 攀钢碳化高炉渣低温氯化试验研究[J]. 钢铁钒钛, 2011, 32(4):12-15,50. |
[5] | 张利凡, 丁满堂, 何翠萍, 等. 含钛高炉渣火法提钛[J]. 中国资源综合利用, 2020, 38(10):94-96. |
[6] | 何思祺, 孙红娟, 彭同江, 等. 碱法处理含钛高炉渣的矿相变化及工艺条件探索[J]. 钢铁钒钛, 2015, 36(6):44-50,56. |
[7] | 李鑫, 于洪浩, 张侯芳, 等. 熔盐高效分解含钛高炉渣制备纳米二氧化钛[J]. 化工学报, 2015, 66(2):827-833. |
[8] | BIAN Z Z, FENG Y L, HAO-RAN L I. Extraction of valuable metals from Ti-bearing blast furnace slag using ammonium sulfate pressu- rized pyrolysis-acid leaching processes[J]. Transactions of Nonfer- rous Metals Society of China, 2020, 30(10):2836-2847. |
[9] | 刘维燥, 胡金鹏, 刘清才, 等. 硫酸铵与钛酸钙焙烧动力学[J]. 化工进展, 2021, 40(8):4624-4630. |
[10] | HE S, PENG T, SUN H. Titanium recovery from Ti-bearing blast furnace slag by alkali calcination and acidolysis[J]. JOM, 2019, 71(9):3196-3201. |
[11] | 曹洪杨, 付念新, 康常波, 等. 改性含钛高炉渣的盐酸加压浸出[J]. 矿产综合利用, 2008(4):11-14. |
[12] | 熊瑶, 李春, 梁斌, 等. 盐酸浸出自然冷却含钛高炉渣[J]. 中国有色金属学报, 2008, 18(3):557-563. |
[13] | 熊瑶, 梁斌, 李春. 自然冷却含钛高炉渣中钛的提取与分离[J]. 过程工程学报, 2008, 8(6):1092-1097. |
[14] | 薛鑫, 李万博, 王建伟, 等. 含钛高炉渣钛提取中酸解率影响因素的研究[J]. 金属矿山, 2009(3):178-181. |
[15] | 陈启福, 张燕秋, 方民宪, 等. 攀钢高炉渣提取二氧化钛及三氧化二钪的研究[J]. 钢铁钒钛, 1991, 12(3):30-35. |
[16] | YANG Zhuoying, YANG Fan, YI Meigui, et al. Estimation of reac- tion heat in Ti-bearing blast furnace slag-sulfuric acid system based on mechanical mixture model[J]. Mining Metallurgy & Ex- ploration, 2021, 38(3):1-6. |
[17] | 刘晓华, 隋智通. 钛渣酸解液制取水合TiO2及杂质行为研究[J]. 矿产综合利用, 2005(6):12-16. |
[18] | 彭兵, 易文质, 彭及, 等. 复杂硫酸盐溶液体系水解制取钛白的热力学研究[J]. 湖南有色金属, 1997(2):47-48. |
[19] | 陈朝华, 刘长河. 钛白粉生产及应用技术[M]. 北京: 化学工业出版社, 2006. |
[20] | 裴润. 硫酸法钛白生产[M]. 北京: 化学工业出版社, 1982. |
[21] | 张益都. 硫酸法钛白粉生产技术创新[M]. 北京: 化学工业出版社, 2010. |
[22] | 叶大伦. 实用无机物热力学数据手册[J]. 北京: 冶金工业出版社, 1981. |
[23] | J.A.迪安. 兰氏化学手册[M]. 魏俊发译.2版.北京: 科学出版社, 2003. |
/
〈 |
|
〉 |