无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
综述与专论

界面化学对镍锰酸锂正极材料电化学性能影响的研究现状及分析

  • 周兰 ,
  • 李旺 ,
  • 廖文俊
展开
  • 上海电气集团股份有限公司中央研究院,上海 200070
周兰(1988— ),女,研究生,工程师,研究方向为锂离子电池材料方向;E-mail: 773649578@qq.com

收稿日期: 2021-03-24

  网络出版日期: 2021-11-15

Research status and analysis of effect of interfacial chemistry on electrochemical properties of LiNi0.5Mn1.5O4 cathode materials

  • Lan ZHOU ,
  • Wang LI ,
  • Wenjun LIAO
Expand
  • Central Research Academy,Shanghai Electric Group Co.,Ltd.,Shanghai 200070,China

Received date: 2021-03-24

  Online published: 2021-11-15

摘要

尖晶石LiNi0.5Mn1.5O4正极材料因理论比容量和理论比能量高、工作电压高、资源丰富且价格低廉等优点而备受关注,但该材料因为高电压下电解液的分解及界面副反应导致循环性能和倍率性能不佳,制约着材料的推广应用。结合近几年的研究报道,介绍了LiNi0.5Mn1.5O4正极材料的结构及脱嵌机制、表/界面化学、改性方法,着重介绍了LiNi0.5Mn1.5O4材料的表面性质及不同组分之间的界面反应机制及对正极材料电化学性能的影响,指出LiNi0.5Mn1.5O4材料的晶面取向、颗粒形貌、表面元素分布、包覆及离子掺杂是改善镍锰酸锂材料电化学性能的有效途径。同时,通过溶剂替代、成膜添加剂的添加、改变锂盐的种类及浓度等方式,开发与之匹配的耐高压电解液也是提升镍锰酸锂电池性能的重要方法。最后,对LiNi0.5Mn1.5O4正极材料表面改性和电解液界面构筑方面进行了总结和展望,旨在为提升该材料性能的相关研究提供参考。

本文引用格式

周兰 , 李旺 , 廖文俊 . 界面化学对镍锰酸锂正极材料电化学性能影响的研究现状及分析[J]. 无机盐工业, 2021 , 53(11) : 17 -24 . DOI: 10.19964/j.issn.1006-4990.2021-0184

Abstract

Spinel LiNi0.5Mn1.5O4 cathode material has attracted much attention due to its high theoretical specific capacity,high theoretical specific energy,high working voltage,abundant resources and low price.However,its poor cycling performance and rate performance are caused by the decomposition of electrolyte and interface side reaction under high pressure,which restricts its popularization and application.Combined with the research reports in recent years,the structure and the mecha-nism of the intercalation,surface/interface chemistry,and modification methods of LiNi0.5Mn1.5O4 cathode material are introdu-ced.The surface properties of LiNi0.5Mn1.5O4,the interfacial reaction mechanism between different components and its influence on the electrochemical performance of cathode material are emphatically introduced.It proposes that the crystal plane orienta-tion,particle morphology,surface element distribution,coating and ion doping are effective ways to improve the electrochemi-cal performance of LiNi0.5Mn1.5O4 material.At the same time,the development of suitable high-voltage electrolyte by solvent substitution,film-forming additives addition,changing the type and concentration of lithium salt is also an important method to improve the performance of LiNi0.5Mn1.5O4 battery.Finally,the surface modification of LiNi0.5Mn1.5O4 cathode material and the construction of electrolyte interface are summarized and prospected,which aims to provide reference for the related research on improving the performance of the material.

参考文献

[1] 李旺, 周兰, 刘佳丽, 等. 镍锰酸锂正极材料制备及其适配性电解液研究最新进展[J]. 无机盐工业, 2019, 51(6):5-10.
[2] 金彦章, 王永和, 刘强, 等. 高电压正极材料LiNi0.5Mn1.5O4制备及性能研究[J]. 无机盐工业, 2017, 49(6):45-49.
[3] 梁文彪, 李世友, 崔孝玲, 等. 高电压LiNi0.5Mn1.5O4正极材料现状及展望[J]. 硅酸盐通报, 2019, 278(11):77-82.
[4] ZHANG X, CHENG F, ZHANG K, et al. Facile polymer-assisted synjournal of LiNi0.5Mn1.5O4 with a hierarchical micro-nano structure and high rate capability[J]. RSC Advances, 2012, 2(13):5669-5675.
[5] TERADA Y, YASAKA K, NISHIKAWA F, et al. In situ XAFS an-alysis of Li(Mn,M)2O4(M=Cr,Co,Ni) 5V cathode materials for li-thium-ion secondary batteries[J]. Journal Solid State Chemistry, 2001, 156:286-291.
[6] ZHOU L, WANG L, WAN L. Preparation,electrochemistry properti-es of LiNi0.5-xFe0.0485Mn1.5-yO4 by Spray-Dry method with different Mn/Ni ratios[J]. Digest Journal of Nanomaterials and Biostructures, 2020, 15(3):857-866.
[7] HAI B, SHUKLA A K, DUNCAN H, et al. The effect of particle sur-face facets on the kinetic properties of LiNi0.5Mn1.5O4 cathode ma-terials[J]. Journal of Materials Chemistry A, 2013, 1(3):759-769.
[8] DENG Y F, ZHAO S X, XU Y H, et al. Impact of P doped in spinel LiNi0.5Mn1.5O4 on degree of disorder,grain morphology,and electro-chemical performance[J]. Chemistry of Materials, 2015, 27:7734-7742.
[9] CHEMELEWSKI K R, SHIN D W, LI W, et al. Octahedral and trunc-uncated high-voltage spinel cathodes:The role of morphology and surface planes in electrochemical properties[J]. Journal of Materi-als Chemistry A, 2013, 1:3347-3354.
[10] GUO J, DENG Z, YAN S, et al. Preparation and electrochemical performance of LiNi0.5Mn1.5O4spinels with different particle sizes and surface orientations as cathode materials for lithium-ion battery[J]. Journal of Materials Science, 2020, 55:13157-13176.
[11] WEI Y, TUO K, WANG P, et al. Appropriate proportion truncated octahedron LiNi0.5Mn1.5O4 with excellent electrochemical properties for lithium-ion batteries prepared by graphite-assisted calcination method[J]. Ionics, 2020, 26:6003-6012.
[12] ZHOU M, GONG J, DENG Z, et al. Synjournal and electrochemical performances of LiNi0.5Mn1.5O4 spinels with different surface orientations for lithium-ion batteries[J]. Ionics, 2020, 26(5):2187-2200.
[13] CHEN Z, ZHAO R, DU P, et al. Polyhedral LiNi0.5Mn1.5O4 with exc-ellent electrochemical properties for lithium-ion batteries[J]. Jo-urnal of Materials Chemistry A, 2014, 2:12835-12848.
[14] LIU H, KLOEPSCH R, WANG J, et al. Truncated octahedral LiNi0.5Mn1.5O4 cathode material for ultralonglife lithium-ion battery:Positive(100) surfaces in high-voltage spinel system[J]. J.Power Sources, 2015, 300:430-437.
[15] LIU J, LIU W, JI S, et al. Electrospun spinel LiNi0.5Mn1.5O4 hierarc-hical nanofibers as 5 V cathode materials for lithium-ion batteri-es[J]. ChemPlusChem, 2013, 78:636-641.
[16] HAO X, AUSTIN M H, BARTLETT B M. Two-step hydrothermal synjournal of submicron Li1+xNi0.5Mn1.5O4-δ for lithium-ion battery ca-thodes(x=0.02,δ=0.12)[J]. Dalton Transactions, 2012, 41:8067-8076.
[17] 罗英, 王勇, 郭满毅, 等. 基于Mn3+浓度和形貌控制的高性能LiNi0.5Mn1.5O4正极材料[J]. 上海航天, 2020, 224(2):50-57.
[18] XIAO J, CHEN X, SUSHKO P V, et al. High-performance LiNi0.5Mn1.5O4 spinel controlled by Mn3+ concentration and site di-sorder[J]. Adv.Mater., 2012, 24:2109-2116.
[19] LIU D, LU Y, GOODENOUGH J B. Rate properties and elevated temperature performances of LiNi0.5-xCr2xMn1.5xO4(0≤2x≤0.8) as 5 V cathode materials for lithium-ion batteries[J]. Journal of The Electrochemical Society, 2010, 157:A1269-A1273.
[20] LEE E S, MANTHIRAM A. Influence of doping on the cation order-ing and charge-discharge behavior of LiMn1.5Ni0.5-xMxO4(M=Cr,Fe,Co,and Ga) spinels between 5.0 and 2.0 V[J]. Journal of Materi-als Chemistry A, 2013, 1:3118-3126.
[21] LIN M, BEN L, SUN Y, et al. Insight into the atomic structure of high-voltage spinel LiNi0.5Mn1.5O4 cathode material in the first cy-cle[J]. Chemistry of Materials, 2015, 27:292-303.
[22] 张文林, 霍宇, 李功伟, 等. 离子液体作为电解液添加剂用于高压锂离子电池[J]. 化工学报, 2019, 70(6):2334-2342.
[23] XU Y, WAN L, LIU J, et al. γ-butyrolactone and glutaronitrile as 5 V electrolyte additive and its electrochemical performance for LiNi0.5Mn1.5O4[J]. Journal of Alloys and Compounds, 2016, 698:207-214.
[24] 陈锐芳, 撒召遥, 苏长伟, 等. 尖晶石LiMn2O4正极材料的研究进展[J]. 电池, 2020, 265(5):91-95.
[25] PIECZONKA N P, LIU Z, LU P, et al. Understanding transition-metal dissolution behavior in LiNi0.5Mn1.5O4 high-voltage spinel for lithium ion batteries[J]. Journal of Physical Chemistry C, 2013, 117:15947-15957.
[26] OKUNO Y, USHIROGATA K, SODEYAMA K, et al. Structures,electronic states,and reactions at interfaces between LiNi0.5Mn1.5O4 cathode and ethylene carbonate electrolyte:A first-principles stu-dy[J]. The Journal of Physical Chemistry C, 2019, 123(4):2267-2277.
[27] JARRY A, GOTTIS S, YU Y S, et al. The formation mechanism of fluorescent metal complexes at the LiNi0.5Mn1.5O4/carbonate ester electrolyte interface[J]. Journal of the American Chemical Society, 2015, 137:3533-3539.
[28] PANG W K, LIN H F, PETERSON V K, et al. Enhanced rate-capa-bility and cycling-stability of 5 V SiO2 and polyimide-coated ca-tion ordered LiNi0.5Mn1.5O4 lithium-ion battery positive electrod-es[J]. The Journal of Physical Chemistry C, 2017, 121:3680-3689.
[29] KUENZEL M, KIM G T, ZARRABEITIA M, et al. Crystal engine-ering of TMPOx-coated LiNi0.5Mn1.5O4 cathodes for high-performa-nce lithium-ion batteries[J]. Materials Today, 2020, 39:127-136.
[30] XU T, LI Y, WANG D, et al. Enhanced electrochemical performa-nce of LiNi0.5Mn1.5O4 cathode material by YPO4 surface modifica-tion[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5):5818-5825.
[31] CHU C T, MONDAL A, KOSOVA N V, et al. Improved high-tem-perature cycliablity of AlF3 modified spinel LiNi0.5Mn1.5O4 cathode for lithium-ion batteries[J]. Applied Surface Science, 2020, 530:147169-147177.
[32] TIURIN O, SOLOMATIN N, AUINAT M, et al. Atomic layer depo-sition(ALD) of lithium fluoride(LiF) protective film on Li-ion ba-ttery LiMn1.5Ni0.5O4 cathode powder material[J]. Journal of Power Sources, 2020, 448:227373-227386.
[33] 孙健铭, 谭毅, 王凯, 等. Al3+掺杂对LiNi0.5Mn1.5O4材料性能的影响[J]. 精细化工, 2020, 37(3):500-506.
[34] CHEN A, KONG L, SHU Y, et al. Role of Al-doping with different sites upon the structure and electrochemical performance of spheri-cal LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries[J]. RSC Advances, 2019, 9(22):12656-12666.
[35] LI X, ZHANG Y, LI W, et al. The synergetic effect of LiMg0.5Mn1.5O4 coating and Mg2+ doping on improving electrochemi-cal performances of high-voltage LiNi0.5Mn1.5O4 by sol-gel self-co-combustion method[J]. Chemistry Select, 2020, 5(8):2593-2601.
[36] GAO Y, YU H, SANDINENI P, et al. Fe doping in LiMn1.5Ni0.5O4 by atomic layer deposition followed by annealing:Depths and occupa-tion sites[J]. The Journal of Physical Chemistry C, 2021, 125(14):7560-7567.
[37] AKLALOUCH M, BOUADDI H, GARHI G, et al. Environmentally friendly 5 V cathode based on Fe-doped LiMn1.5Ni0.5O4 spinel for Li-ion batteries[J]. Materials Today:Proceedings, 2021, 37:3951-3957.
[38] SUN H, KONG X, FENG S, et al. Effects of Zn doping amount on the electrochemical properties of LiNi0.5Mn1.5O4 lithium-ion cathode materials[J]. International Journal of Electrochemical Science, 2019, 14:11391-11405.
[39] LIU G Y, KONG X, LUO T B, et al. Cu doped LiNi0.5Mn1.5-xCuxO4 (x=0,0.03,0.05,0.10,0.15) with significant improved electroche-mical performance prepared by a modified low temperature solu-tion combustion synjournal method[J]. Ceramics International, 2018, 44:4603-4610.
[40] 李嘉雯, 王海龙, 余俏滟. Co3+掺杂对LiNi0.5Mn1.5O4导电性和倍率性能的影响研究[J]. 广州化工, 2018, 46(22):38-40.
[41] XU D, YANG F, LIU Z, et al. Effects of Co doping sites on the elec-trochemical performance of LiNi0.5MnO4 as a cathode material[J]. Ionics, 2020, 26(8):1-7.
[42] LI F, MA J, LIN J, et al. Exploring the origin of electrochemical per-formance of Cr-doped LiNi0.5Mn1.5O4[J]. Physical Chemistry Che-mical Physics, 2020, 22(7):2831-2838.
[43] OH S W, PARK S H, KIM J H, et al. Improvement of electrochemi-cal properties of LiNi0.5Mn1.5O4 spinel material by fluorine substitu-tion[J]. Journal of Power Sources, 2006, 157:464-470.
[44] SHA O, TANG Z, WANG S, et al. The multi-substituted LiNi0.475Al0.01Cr0.04Mn1.475O3.95F0.05 cathode material with excellent rate capability and cycle life[J]. Electrochimica Acta, 2012, 77:250-255.
文章导航

/