无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
研究与开发

GO-TSC/聚酰亚胺混合基质膜的制备及气体分离性能研究

  • 郭欣 ,
  • 衣华磊 ,
  • 袁玮良 ,
  • 郝蕴 ,
  • 段翠佳 ,
  • 陈赞
展开
  • 1.中海油研究总院有限责任公司,北京 100028
    2.中海油天津化工研究设计院有限公司
    3.河北工业大学
郭欣(1986— ),男,硕士,高工,主要从事海洋石油工艺设计;E-mail: guoxin3@cnooc.com.cn

收稿日期: 2020-12-07

  网络出版日期: 2021-10-11

Study on preparation of GO-TSC/polyimide mixed matrix membrane and its gas separation performance

  • Xin Guo ,
  • Hualei Yi ,
  • Weiliang Yuan ,
  • Yun Hao ,
  • Cuijia Duan ,
  • Zan Chen
Expand
  • 1. CNOOC Research Institute Ltd,Beijing 100028,China
    2. CenerTech Tianjin Chemical Research and Design Institute Co.,Ltd.
    3. Hebei University of Technology

Received date: 2020-12-07

  Online published: 2021-10-11

摘要

使用氨基硫脲(TSC)对氧化石墨烯(GO)进行改性,制备GO-TSC层状复合材料。随后,将该复合材料加入到Matrimid®5218(PI)基质中,制备用于二氧化碳分离的混合基质膜(MMMs)。通过TGA、SEM及气体分离性能测试考察了GO-TSC对膜热稳定性、结构和气体分离性能等的影响。SEM结果显示GO-TSC可均匀分散在聚合物基质上并与基质紧密结合;TGA结果显示混合基质膜在250 ℃以上仍保持稳定。与纯PI膜相比,MMMs显著增强了二氧化碳的渗透性。GO-TSC中所含的氨基与二氧化碳具有良好的亲和力,增加的碱性位点可以有效地转运二氧化碳。GO-TSC的层状结构增加了气体的传输路径,不利于大动态直径气体(甲烷、氮气)的通过,从而提高了分离性能。GO-TSC负载量为0.75%(质量分数)时混合基质膜的分离性能最佳。相比较纯PI膜,混合基质膜的二氧化碳渗透系数和二氧化碳/甲烷、二氧化碳/氮气分离系数分别提高了42.16%、95.79%和83.72%。

本文引用格式

郭欣 , 衣华磊 , 袁玮良 , 郝蕴 , 段翠佳 , 陈赞 . GO-TSC/聚酰亚胺混合基质膜的制备及气体分离性能研究[J]. 无机盐工业, 2021 , 53(10) : 74 -80 . DOI: 10.19964/j.issn.1006-4990.2020-0658

Abstract

Graphene oxide(GO) was modified using thiosemicarbazide(TSC) for the fabrication of flat sheet GO-TSC cmpo-site.Subsequently,this composite was incorporated into the Matrimid®5218(PI) matrix to fabricate mixed matrix membranes(MMMs) for CO2 separation.Through TGA,SEM and gas separation performance tests,influence of GO-TSC on thermal sta-bility,structure and gas separation performance of the mixed matrix membrane was investigated.SEM showed that GO-TSC could be uniformly dispersed in the polymer matrix and tightly combined with the matrix;TGA result showed that decomposi-tion temperature of mixed matrix membranes was above 250 ℃.MMMs showed significantly enhanced CO2 permeability com-pared with pure PI membrane.The amino group contained in GO-TSC had a good affinity with CO2,and the increased amidogen sites could effectively transport CO2.The GO-TSC lamellar structure increased the gas transmission path,which was not conducive to the passage of large dynamic diameter gases(CH4,N2),thereby improving the separation performance.The MMMs doped with GO-TSC-0.75% showed optimal gas separation performance.Compared with pure PI membrane,the CO2 permeability,CO2/CH4 selectivity and CO2/N2 selectivity of the MMMs were increased by 42.16%,95.79% and 83.72%,respectively.

参考文献

[1] Scholes C A, Smith K H, Kentish S E, et al. CO2 capture from pre-combustion processes-Strategies for membrane gas separation[J]. International Journal of Greenhouse Gas Control, 2010, 4(5):739-755.
[2] Liu Y F, Wang Z, Yang H L, et al. 3-Phenylethynyl phthalimide end-capped imide oligomers and the cured polymers[J]. Journal of Polymer Science Part A:Polymer Chemistry, 2008, 46(12):4227-4235.
[3] Zhao S, Wang Z, Qiao Z H, et al. Gas separation membrane with CO2-facilitated transport highway constructed from amino carrier containing nanorods and macromolecules[J]. Journal of Materials Chemistry A, 2013, 1(2):246-249.
[4] Kanehashi S, Chen G Q, Scholes C A, et al. Enhancing gas permea-bility in mixed matrix membranes through tuning the nanoparticle properties[J]. Journal of Membrane Science, 2015, 482(5):49-55.
[5] Yu J, Wang C Q, Xiang L, et al. Enhanced C3H6/C3H8 separation per-formance in poly(vinyl acetate) membrane blended with ZIF-8 nanocrystals[J]. Chemical Engineering Science, 2018, 179(6):1-12.
[6] Li X Q, Ma L, Zhang H Y, et al. Synergistic effect of combining car-bon nanotubes and graphene oxide in mixed matrix membranes for efficient CO2 separation[J]. Journal of Membrane Science, 2015, 479(1):1-10.
[7] Li X F, Zhang F, Jiang H Y, et al. Amine-functionalized GO as an active and reusable acid-base bifunctional catalyst for one-pot casc-ade reactions[J]. ACS Catalysis, 2013, 4(2):394-401.
[8] 陈德强, 白云翔, 张春芳, 等. Fe3O4 /PIM-1磁性混合基质膜的制备及其 O2/N2 分离性能研究[J]. 膜科学与技术, 2017, 37(4):27-37.
[9] Li Y F, Wang S F, He G, et al. Facilitated transport of small molec-ules and ions for energy-efficient membranes[J]. Chemical Society Reviews, 2015, 44(1):103-118.
[10] Zhao Y, Wang F S, Winston H, et al. Steric hindrance effect on amine demonstrated in solid polymer membranes for CO2 transpo-rt[J]. Journal of Membrane Science, 2012, 4(12):132-138.
[11] Xin Q, Zhao L, Li C, et al. Enhancing the CO2 separation perfor-mance of composite membranes by the incorporation of amino acid-functionalized graphene oxide[J]. Journal of Materials Chemistry A, 2015, 3(12):6629-6641.
[12] Peng D D, Wang S F, Tian Z, et al. Facilitated transport membran-es by incorporating graphene nanosheets with high zinc ion loading for enhanced CO2 separation[J]. Journal of Membrane Science, 2017, 522:351-362.
[13] Xin Q P, Ma F X, Zhang L, et al. Interface engineering of mixed matrix membrane via CO2-philic polymer brush functionalized graphene oxide nanosheets for efficient gas separation[J]. Journal of Membrane Science, 2019, 586(9):23-33.
[14] Jia X L, Zhang Q, Zhao M Q, et al. Dramatic enhancements in toug-hness of polyimide nanocomposite via long-CNT-induced long-range creep[J]. Journal of Materials Chemistry, 2012, 22(14):45-58.
[15] Zambare R, Song X, Bhuvana S, et al. Ultrafast dye removal using ionic liquid-graphene oxide sponge[J]. ACS Sustainable Chemistry& Engineering, 2017, 5(7):6026-6035.
[16] Jia M M, Feng Y, Qiu J, et al. Amine-functionalized MOFs@GO as filler in mixed matrix membrane for selective CO2 separation[J]. Separation and Purification Technology, 2019, 213(2):63-69.
[17] Wang C Y, Lan Y F, Yu W T, et al. Preparation of amino-function-alized graphene oxide/polyimide composite films with improved mechanical,thermal and hydrophobic properties[J]. Applied Sur-face Science, 2016, 362(2):11-19.
[18] Bu J Q, Yuan L, Zhang N, et al, High-efficiency adsorption of me-thylene blue dye from wastewater by a thiosemicarbazide function-alized graphene oxide composite[J]. Diamond and Related Materi-als, 2020, 101(2):67-79.
[19] Shang N Z, Feng C, Zhang H Y, et al, Suzuki-miyaura reaction ca-talyzed by graphene oxide supported palladium nanoparticles[J]. Catalysis Communications, 2013, 40(8):111-115.
[20] Huang D D, Xin Q P, Li Y Z, et al. Synergistic effects of zeolite imidazole framework@graphene oxide composites in humidified mixed matrix membranes on CO2 separation[J]. RSC Advances, 2018, 7(8):6099-6109.
[21] Liu Y, Peng D D, He G, et al, Enhanced CO2 permeability of mem-branes by incorporating polyzwitterion@CNT composite particles into polyimide matrix[J]. ACS Applied Materials & Interfaces, 2014, 6(15):13051-13060.
[22] Li X Q, Cheng Y D, Zhang H Y, et al. Efficient CO2 capture by func-tionalized graphene oxide nanosheets as fillers to fabricate multi-permselective mixed matrix membranes[J]. ACS Applied Materi-als & Interfaces, 2015, 7(9):177-189.
[23] Cui Y, Kundalwal S I, Kumar S. Gas barrier performance of grap-hene/polymer nanocomposites[J]. Carbon, 2016, 98(3):313-333.
[24] Ge B S, Wang T, Sun H X, et al. Preparation of mixed matrix mem-branes based on polyimide and aminated graphene oxide for CO2 separation[J]. Polymers for Advanced Technologies, 2018, 29(4):1334-1343.
[25] Khan A, Klaysom C, Gahlaut A, et al. Mixed matrix membranes co-mprising of Matrimid and-SO3H functionalized mesoporous MCM-41 for gas separation[J]. Journal of Membrane Science, 2013, 47(4):73-79.
[26] Li F, Li Y, Chung T S, et al. Facilitated transport by hybrid POSS®-Matrimid®-Zn2+ nanocomposite membranes for the separation of natural gas[J]. Journal of Membrane Science, 2010, 356(3):14-21.
[27] Wang S, Tian Z Z, Feng J, et al. Enhanced CO2 separation proper-ties by incorporating poly(ethylene glycol)-containing polymeric submicrospheres into polyimide membrane[J]. Journal of Mem-brane Science, 2015, 473(1):310-317.
[28] Zornoza B, Téllez C, Coronas J. Mixed matrix membranes compris-ing glassy polymers and dispersed mesoporous silica spheres for gas separation[J]. Journal of Membrane Science, 2011, 368(2):100-109.
[29] Zhang Y, Musselman I H, Ferraris J P, et al. Gas permeability pro-perties of Matrimid® membranes containing the metal-organic fra-mework Cu-BPY-HFS[J]. Journal of Membrane Science, 2018, 313(5):170-181.
[30] Zhang Y, Balkus K J, Musselman I H, et al. Mixed-matrix membra-nes composed of Matrimid® and mesoporous ZSM-5 nanoparticl-es[J]. Journal of Membrane Science, 2008, 325(1):28-39.
文章导航

/