无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
催化材料

络合物法制备镍-氮共掺杂炭基二氧化碳电催化剂

  • 常若鹏 ,
  • 胡旭 ,
  • 贺雷 ,
  • 郝广平
展开
  • 大连理工大学化工学院,精细化工国家重点实验室,辽宁省低碳资源高值化利用重点实验室,辽宁大连 116024
常若鹏(1995— ),男,硕士,研究方向为二氧化碳电催化催化剂的制备;E-mail: changruopeng@163.com

收稿日期: 2020-07-07

  网络出版日期: 2021-09-08

基金资助

国家自然科学基金项目(21975037);辽宁省“兴辽英才计划”项目资助(XLYC1807205);中央高校基本科研业务费资助(DUT18RC(3)075)

Preparation of nickel-nitrogen co-doped carbon-based carbon dioxide electrocatalyst through complex-assisted method

  • Ruopeng Chang ,
  • Xu Hu ,
  • Lei He ,
  • Guangping Hao
Expand
  • State Key Laboratory of Fine Chemicals,Liaoning Key Laboratory for Catalytic Conversion Carbon Resources,School of Chemical Engineering,Dalian University of Technology,Dalian 116024,China

Received date: 2020-07-07

  Online published: 2021-09-08

摘要

过渡金属-氮共掺杂炭基催化剂广泛应用于电催化二氧化碳还原反应(CO2RR)。为解决催化剂存在的催化活性及选择性问题,以乙二胺与硝酸镍发生配位反应形成的三乙二胺合镍小分子络合物作为氮源和镍源,分别以亲水氧化石墨烯及疏水炭黑为载体,得到两类镍-氮共掺杂多孔炭基催化剂。通过X射线衍射及透射电镜等手段分析了镍物种在不同处理阶段的存在形式。CO2RR性能测试表明,同一炭载体具有不同金属负载量的催化剂经过酸洗处理除去镍纳米颗粒后,一氧化碳分电流密度得到明显提升,表明原子级分散的镍物种是CO2RR的活性位点。在-0.8 V(vs.RHE),不同催化剂的一氧化碳法拉第效率均达到90%。与亲水炭材料作为载体相比,疏水炭材料为载体制备的催化剂一氧化碳分电流密度更高,这表明疏水炭载体有利于过渡金属络合物在载体骨架中的负载与分散,进而抑制后续处理过程中活性物质的损失,从而获得高活性的镍-氮共掺杂炭基电催化剂。

本文引用格式

常若鹏 , 胡旭 , 贺雷 , 郝广平 . 络合物法制备镍-氮共掺杂炭基二氧化碳电催化剂[J]. 无机盐工业, 2021 , 53(9) : 97 -103 . DOI: 10.19964/j.issn.1006-4990.2020-0389

Abstract

Transition metal-nitrogen co-doped carbon-based catalysts have attracted widely attention in electrocatalytic CO2 reduction reaction(CO2RR).To solve the problems of catalytic activity and selectivity of catalysts,two kinds of Ni-N co-do-ped porous carbon-based catalysts were prepared by using triethylenediamine,a small molecule complex,formed by the coor-dination reaction between ethylenediamine and nickel nitrate and hydrophilic GO and hydrophobic carbon black were select-ed as the support,respectively.The existing forms of nickel species in different processing stages were discussed by X-ray diffraction and transmission electron microscopy.The CO2RR performance showed that the CO current density had been enhanced when the catalyst with different metal loadings on the same carbon support was pickled to remove nickel nanoparticles,which indicated that the nickel species in high dispersion were beneficial to the electrocatalytic reduction of CO2.At the potential of -0.8 V(vs.RHE),the catalysts with different carbon supports reached a CO Faradic efficiency of 90%.Compared with hydrophilic carbon materials as supports,hydrophobic carbon materials as supports had higher carbon monoxide partial current density,which indicated that hydrophobic carbon supports were conducive to the loading and dispersion of transition metal complexes in the framework of the support,and then inhibited the loss of active substances in the subsequent treatment process,so as to obtain high activity Ni-N co-doped carbon based electrocatalysts.

参考文献

[1] Ren Wenhao, Zhao Chuan. Paths towards enhanced electrochemical CO2 reduction[J]. National Science Review, 2020, 7(1):7-9.
[2] 王建行, 赵颖颖, 李佳慧, 等. 二氧化碳的捕集、固定与利用的研究进展[J]. 无机盐工业, 2020, 52(4):12-17.
[3] He Qun, Liu Daobin, Lee Ji Hoon, et al. Electrochemical conversion of CO2 to syngas with controllable CO/H2 ratios over Co and Ni single-atom catalysts[J]. Angewandte Chemie-International Edition, 2020, 59(8):3033-3037.
[4] Bai Xiaofang, Chen Wei, Zhao Chengcheng, et al. Exclusive formation of formic acid from CO2 electroreduction by a tunable Pd-Sn alloy[J]. Angewandte Chemie International Edition, 2017, 56(40):12219-12223.
[5] Jiang Kun, Siahrostami Samira, Akey Austin J, et al. Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynjournal[J]. Chem, 2017, 3(6):950-960.
[6] Yang Hong Bin, Hung Sung-Fu, Liu Song, et al. Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction[J]. Nature Energy, 2018, 3(2):140-147.
[7] Hu Xinming, Hval Halvor Hϕen, Bjerglund Emil Tveden, et al. Selective CO2 reduction to CO in water using earth-abundant metal and nitrogen-doped carbon electrocatalysts[J]. ACS Catalysis, 2018, 8(7):6255-6264.
[8] Li Xiaogang, Bi Wentuan, Chen Minglong, et al. Exclusive Ni-N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction[J]. Journal of the American Chemical Society, 2017, 139(42):14889-14892.
[9] Guo Chen, Zhang Tian, Deng Xiangxuan, et al. Electrochemical CO2 reduction to C1 products on single nickel/cobalt/iron-doped graphitic carbon nitride:A DFT study[J]. ChemSusChem, 2019, 12(23):5126-5132.
[10] Zhao Changming, Dai Xinyao, Yao Tao, et al. Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2[J]. Journal of the American Chemical Society, 2017, 139(24):8078-8081.
[11] Pan Fuping, Zhang Hanguang, Liu Kexi, et al. Unveiling active sites of CO2 reduction on nitrogen-coordinated and atomically dispersed iron and cobalt catalysts[J]. ACS Catalysis, 2018, 8(4):3116-3122.
[12] Huan Tran Ngoc, Ranjbar Nastaran, Rousse Gwenaëlle, et al. Electrochemical reduction of CO2 catalyzed by Fe-N-C materials:A structure-selectivity study[J]. ACS Catalysis, 2017, 7(3):1520-1525.
[13] Ju Wen, Bagger Alexander, Hao Guang-Ping, et al. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2[J]. Nature Communications, 2017, 8(1).Doi: 10.1038/s41467-017-01035-z.
[14] Cheng Yi, Zhao Shiyong, Li Haobo, et al. Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO2[J]. Applied Catalysis B:Environmental, 2019, 243:294-303.
[15] Ma Shuangshuang, Su Panpan, Huang Wenjuan, et al. Atomic Ni species anchored N-doped carbon hollow spheres as nanoreactors for efficient electrochemical CO2 reduction[J]. Chem Cat Chem, 2019, 11(24):6092-6098.
[16] Lu Chenbao, Yang Jian, Wei Shice, et al. Atomic Ni anchored covalent triazine framework as high efficient electrocatalyst for car-bon dioxide conversion[J]. Advanced Functional Materials, 2019, 29(10).Doi: 10.1002/adfm.201806884.
[17] Wu Qiao, Xie Rui-Kuan, Mao Min-Jie, et al. Integration of strong electron transporter tetrathiafulvalene into metalloporphyrin-based covalent organic framework for highly efficient electroreduction of CO2[J]. ACS Energy Letters, 2020, 5(3):1005-1012.
[18] Alahmari Fatimah, Davaasuren Bambar, Emwas Abdul-Hamid, et al. Tris(ethylenediamine)nickel(Ⅱ) thio-hydroxogermanate mono-hydrate:Synjournal,crystal structure,1H NMR,EPR,optical and magnetic properties[J]. Inorganica Chimica Acta, 2019, 488:145-151.
[19] 朱红林, 李文英, 黎挺挺, 等. CO2电还原用氮掺杂碳基过渡金属单原子催化剂[J]. 化学进展, 2019, 31(7):939-953.
文章导航

/