田口实验设计法优化碳酸锂反应结晶制备工艺
收稿日期: 2020-09-25
网络出版日期: 2021-08-11
Optimizing preparation process of lithium carbonate reaction crystallization by Taguchi experimental design method
Received date: 2020-09-25
Online published: 2021-08-11
单因素实验无法全面、可靠地研究各因素对反应结晶过程制备高品质碳酸锂的影响,田口设计有利于全面研究各因素对制备高品质碳酸锂的影响,实验周期较短,实验成本较低。以东台吉乃尔盐湖精制卤水为原料,设计田口实验,采用聚焦光束反射测量仪FBRM G400实时在线研究反应温度、搅拌速率、卤水加料速度、碳酸钠浓度等因素对反应结晶工艺中碳酸锂粒径和纯度的影响。通过田口实验表明搅拌速率对碳酸锂的粒径影响最大,碳酸锂的纯度对反应温度最敏感。研究结果表明,反应温度为85 ℃、搅拌速率为200 r/min、卤水加料速度为2 mL/min、碳酸钠质量浓度为201.6 g/L时得到的碳酸锂品质最优,其粒度为3.71 μm,纯度高达99.62%。
王斌 , 邓小川 , 史一飞 , 董超超 , 樊发英 , 朱朝梁 , 樊洁 , 马婉霞 , 左方涛 . 田口实验设计法优化碳酸锂反应结晶制备工艺[J]. 无机盐工业, 2021 , 53(8) : 60 -65 . DOI: 10.19964/j.issn.1006-4990.2020-0527
Single-factor experiment cannot comprehensively and reliably study the influence of various factors on the pre-paration of high-quality lithium carbonate during the reaction crystallization process.Taguchi′s design is conducive to the comprehensive study of various factors to prepare high-quality lithium carbonate.The experiment cycle is shorter and the experiment cost is lower.Using the refined brine of Dongtai Jinel Salt Lake as the raw material,Taguchi experiment was designed,and the focused beam reflection measuring instrument FBRM G400 was used to study effect of the reaction temperature,stirring rate,brine feed rate,Na2CO3 concentration and other factors on the reaction crystallization process in real-time on-line study of the lithium carbonate particle size and purity.Taguchi experiments showed that the stirring rate had the greatest influence on the particle size of lithium carbonate,and the purity of lithium carbonate was most sensitive to the reaction temperature.The results of the study showed that when the reaction temperature was 85 ℃,the stirring rate was 200 r/min,the brine feed rate was 2 mL/min,and the mass concentration of Na2CO3 was 201.6 g/L,the quality of obtained lithium carbonate was the best with particle size of 3.71 μm and purity of 99.62%.
[1] | 中华人民共和国工业和信息化部. YS/T 582—2013 电池级碳酸锂[S]. 北京: 中国标准出版社, 2013. |
[2] | Ohyama M, Kudo S, Amari S, et al. Production of crystalline particles with high homogeneity in reaction crystallization by using pH-solu-bility-profile[J]. Journal of Industrial & Engineering Chemistry, 2019, 75:33-38. |
[3] | 孙锡良. 盐湖含锂卤水萃取锂及制备碳酸锂工艺研究[D]. 湖南: 中南大学, 2005. |
[4] | 王彦飞, 王磊鑫, 邢红, 等. 反应结晶制备碳酸锂的粒度及形貌控制[J]. 无机盐工业, 2016, 48(9):13-17. |
[5] | 陶箴奇. 以盐湖碳酸锂为原料制备电池级碳酸锂的研究[D]. 青海: 青海大学, 2016. |
[6] | 张嫦, 赵青. 球形微细碳酸锂粉体的制备工艺研究[J]. 西南民族大学学报:自然科学版, 2008, 34(2):326-329. |
[7] | 段绍君, 孙玉柱, 宋兴福, 等. 响应曲面法优化碳酸锂反应结晶工艺[J]. 化工学报, 2017, 68(11):4169-4177. |
[8] | Habrioux A, Hebié S, Napporn T W, et al. One-step synjournal of clean and size-controlled gold electrocatalysts:Modeling by taguchi design of experiments[J]. Electrocatalysis, 2011, 2(4):279-284. |
[9] | 彭爱红. Minitab软件在有重复试验的正交试验设计中的应用[J]. 集美大学学报:教育科学版, 2013, 14(1):111-114. |
[10] | 毛君, 尹航, 崔闯, 等. 基于Minitab确定最佳参数的实验设计[J]. 煤矿机械, 2008(8):14-16. |
[11] | 陈象青, 屈建, 卢今, 等. 田口实验设计法优选白芍中芍药苷的提取工艺[J]. 中国新药杂志, 2013, 22(15):1836-1839. |
[12] | 赵强强, 韩丽, 熊永爱, 等. 田口实验设计法优选黄芪多糖的提取工艺[J]. 中国实验方剂学杂志, 2010, 16(12):1-3,6. |
[13] | 郑斌, 袁巨龙, 赵萍, 等. 变曲率沟槽精密球研磨加工优化实验研究[J]. 表面技术, 2017, 46(2):214-219. |
[14] | 赵鹏程, 李智, 商正, 等. 基于田口法的熔融沉积制造表面粗糙度实验研究[J]. 实验技术与管理, 2020, 37(3):162-164. |
[15] | 周红艳. 基于田口实验设计的液晶屏模组夹层异物改善研究[D]. 上海: 上海交通大学, 2015. |
[16] | 杨慎东, 孙学武, 陈飞, 等. 田口实验法在背光源光学薄膜选材中的应用研究[J]. 光电子技术, 2016, 36(2):135-138. |
/
〈 |
|
〉 |