无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
无机新型材料——能源存储与转换

氮掺杂碳纳米材料在氧还原反应催化剂中的研究进展

  • 杜淼 ,
  • 马志远 ,
  • 姬长建 ,
  • 王磊
展开
  • 1.山东师范大学化学化工与材料科学学院,山东济南 250014
    2.齐鲁师范学院物理与电子工程学院
    3.山东商业职业技术学院
杜淼(1980— ),男,副教授,博士,研究方向为二维纳米材料;E-mail: dma1980@163.com

收稿日期: 2021-04-09

  网络出版日期: 2021-07-08

基金资助

国家自然科学基金项目(21501103);中国博士后科学基金项目(2016M592238)

Research progress of nitrogen-doped carbon nanomaterials for ORR catalyst

  • Miao Du ,
  • Zhiyuan Ma ,
  • Changjian Ji ,
  • Lei Wang
Expand
  • 1. College of Chemistry,Chemical Engineering and Materials Science,Shandong Normal University,Jinan 250014,China
    2. College of Physics and Electronic Engineering,Qilu Normal University
    3. Shandong Institute of Commerce & Technology

Received date: 2021-04-09

  Online published: 2021-07-08

摘要

长期以来,碳材料负载高分散的铂催化剂及其合金材料一直是商业化质子交换膜燃料电池(PEMFC)中氧还原反应和氢氧化反应十分有效的催化剂。但由于Pt基催化剂成本高、电化学条件下稳定性差、易CO中毒以及氧还原反应(ORR)动力学迟缓等一系列问题,阻碍了其在燃料电池中的进一步应用和大规模生产。相比之下,氮掺杂碳纳米材料具有低成本、高活性、高稳定性、环境友好等特点,这些优异的性能使其在燃料电池领域有着广阔的应用前景。结合近几年国内外研究现状,综述了原位掺杂法、后掺杂合成法和直接热解法等3种氮掺杂碳纳米材料的制备方法,并分析了各自的优点和不足之处,及其作为ORR催化剂的研究进展。最后,对未来氮掺杂碳纳米材料催化剂研究的主要发展方向进行了展望。

本文引用格式

杜淼 , 马志远 , 姬长建 , 王磊 . 氮掺杂碳纳米材料在氧还原反应催化剂中的研究进展[J]. 无机盐工业, 2021 , 53(6) : 72 -78 . DOI: 10.19964/j.issn.1006-4990.2021-0164

Abstract

For a long time,carbon supported highly dispersed platinum catalysts and their alloys have been the most effective catalysts for oxygen reduction and hydrogen oxidation in commercial proton exchange membrane fuel cells(PEMFCs).Howe-ber,due to a series of problems,such as high cost,poor stability under electrochemical conditions,CO poisoning and slow kinetics of oxygen reduction reaction(ORR),the Pt-based catalyst has been hindered in its further application and large-scale production in fuel cells.In contrast,nitrogen-doped carbon nanomaterials have the characteristics of low cost,high activity,high stability and environmental friendliness,which make them have broad application prospects in the field of fuel cells.In this paper,based on the research status at home and abroad in recent years,the preparation methods of nitrogen-doped carbon nanomaterials,such as in-situ doping method,post doping synthesis method and direct pyrolysis method were reviewed,and their advantages and disadvantages were analyzed,as well as their research progress of ORR catalysts.Finally,the main development direction of nitrogen-doped carbon nanomaterials catalysts in the future was prospected.

参考文献

[1] Litster S, McLean G. PEM fuel cell electrodes[J]. Journal of Power Sources, 2004,130:61-76.
[2] Zhou M, Wang H L, Guo S J. Towards high-efficiency nanoelectroca-talysts for oxygen reduction through engineering advanced carbon nanomaterials[J]. Chemical Society Reviews, 2016,45(5):1273-1307.
[3] Zhu C Z, Li H, Fu S F, et al. Highly efficient nonprecious metal ca-talysts towards oxygen reduction reaction based on three-dimensio-nal porous carbon nanostructures[J]. Chemical Society Reviews, 2016,45(3):517-531.
[4] Han X P, Huang Y, Gao X G, et al. High-performance N,P-CNL nanocomposites as catalyst for oxygen reduction reaction in fuel cell[J]. International Journal of Energy Research, 2020,44(6):4851-4860.
[5] Qiao M F, Wang Y, Wang Q, et al. Hierarchically ordered porous carbon with atomically dispersed FeN4 for ultra-efficient oxygen reduction reaction in PEMFC[J]. Angewandte Chemie International Edition, 2019,59(7):2688-2694.
[6] Zhang X Y, Wang Q Y, Tang C, et al. High-power microbial fuel cells based on a carbon-carbon composite air cathode[J]. Small, 2019,16(15).Doi: 10.1002/smll.201905240.
[7] Liu Y, Cheng D J, Xu H X, et al. Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction[J]. Proceed-ings of the National Academy of Sciences of the United States of America, 2018,115:6626-6631.
[8] Gasteiger H A, Panels J E, Yan S G. Dependence of PEM fuel cell performance on catalyst loading[J]. Journal of Power Sources, 2004,127:162-171.
[9] Zhu C Z, Du D, Eychmuüller A, et al. Engineering ordered and no-nordered porous noble metal nanostructures:Synjournal,assembly,and their applications in electrochemistry[J]. Chemical Reviews, 2015,115(16):8896-8943.
[10] Guo D H, Shibuya R, Akiba C, et al. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts[J]. Science, 2016,351(6271):361-365.
[11] Debe M K. Electrocatalyst approaches and challenges for automo-tive fuel cells[J]. Nature, 2012,486(7401):43-51.
[12] Faber M S, Jin S. Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications[J]. Energy & Environmental Science, 2014,7(11):3519-3542.
[13] Winter M, Brodd R J. What are batteries,fuel cells,and superca-pacitors?[J]. Chemical Reviews, 2004,104(10):4245-4269.
[14] Sebastián D, Serov A, Matanovic I, et al. Insights on the extraordin-ary tolerance to alcohols of Fe-N-C cathode catalysts in highly performing direct alcohol fuel cells[J]. Nano Energy, 2017,34:195-204.
[15] Xi W, Mahmood A, Liang Z B, et al. Earth-abundant nanomaterials for oxygen reduction[J]. Angewandte Chemie International Edition, 2016,55:2650-2676.
[16] Damjanovic A, Genshaw M A, Bockris J O′M.The role of hydrogen peroxide in the reduction of oxygen at platinum electrodes[J]. The Journal of Physical Chemistry, 1966,70(11):3761-3762.
[17] Tiwari J N, Tiwari R N, Singh G, et al. Recent progress in the deve-lopment of anode and cathode catalysts for direct methanol fuel cells[J]. Nano Energy, 2013,2(5):553-578.
[18] Liu J, Song P, Ning Z G, et al. Recent advances in heteroatom-do-ped metal-free electrocatalysts for highly efficient oxygen reduction reaction[J]. Electrocatalysis, 2015,6(2):132-147.
[19] Wang H F, Tang C, Zhang Q. A review of precious-metal-free bifunc-tional oxygen electrocatalysts:Rational design and applications in Zn-Air batteries[J]. Advanced Functional Materials, 2018,28(46). Doi: 10.1002/adfm.201803329.
[20] Shao M H, Chang Q W, Dodelet J P, et al. Recent advances in elec-trocatalysts for oxygen reduction reaction[J]. Chemical Reviews, 2016,116(6):3594-3657.
[21] Guo X G, Jia J B, Dong H, et al. Hydrothermal synjournal of Fe-Mn bimetallic nanocatalysts as high-efficiency cathode catalysts for microbial fuel cells[J]. Journal of Power Sources, 2019,414:444-452.
[22] Huang K, Zhang L, Xu T, et al. -60 ℃ solution synjournal of atomic-ally dispersed cobalt electrocatalyst with superior performance[J]. Nature Communications, 2019,10(1).Doi: 10.1038/s41467-019-08484-8.
[23] Yang L J, Shui J L, Du L, et al. Carbon-based metal-free ORR elec-trocatalysts for fuel cells:Past,present,and future[J]. Advanced Materials, 2019,31(13).Doi: 10.1002/adma.201804799.
[24] Dai L M. Metal-free carbon electrocatalysts:recent advances and challenges ahead[J]. Advanced Materials, 2019,31(13). Doi: 10. 1002/adma.201900973.
[25] Jiao W L, Chen C, You W B, et al. Yolk-shell Fe/Fe4N@Pd/C ma-gnetic nanocomposite as an efficient recyclable ORR electrocat-alyst and SERS substrate[J]. Small, 2019,15(7).Doi: 10.1002/smll.201805032.
[26] Yasuda S, Furuya A, Uchibori Y, et al. Iron-nitrogen-doped vertic-ally aligned carbon nanotube electrocatalyst for the oxygen reduc-tion reaction[J]. Advanced Functional Materials, 2016,26(5):738-744.
[27] Song S, Zhang X M, Xu X L, et al. Fe,Cu and N co-doped carbon with enhanced electrocatalytic activity towards oxygen reduc-tion[J]. Chem.Electro.Chem., 2020,7(14):3116-3122.
[28] Huang K X, Zhang W Q, Li J. In situ anchoring of zeolite imidazole framework-derived Co,N-doped porous carbon on multiwalled carbon nanotubes toward efficient electrocatalytic oxygen reduc-tion[J]. ACS Sustainable Chemistry & Engineering, 2020,8(1):478-485.
[29] Zheng Y, Jiao Y, Zhu Y H, et al. Molecule-level g-C3N4 coordina-ted transition metals as a new class of electrocatalysts for oxygen electrode reactions[J]. Journal of the American Chemical Society, 2017,139(9):3336-3339.
[30] Lu H H, Yang C, Chen J, et al. Tailoring hierarchically porous ni-trogen-,sulfur-codoped carbon for high-performance supercapaci-tors and oxygen reduction[J]. Small, 2020,16(17).Doi: 10.1002/smll.201906584.
[31] Hu X L, Luo G, Zhao Q N, et al. Ru single atoms on N doped car-bon by spatial confinement and ionic substitution strategies for high performance Li-O2 batteries[J]. Journal of the American Che-mical Society, 2020,142:16776-16786.
[32] Marshall-Roth T, Libretto N J, Wrobel A T, et al. A pyridinic Fe-N4 macrocycle models the active sites in Fe/N-doped carbon electro-catalysts[J]. Nature Communications, 2020,11.Doi: 10.1038/s41467-020-18969-6.
[33] Gong K P, Du F, Xia Z H, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science, 2009,323(5915):760-764.
[34] Wu Z X, Song M, Wang J, et al. Recent progress in nitrogen-doped metal-free electrocatalysts for oxygen reduction reaction[J]. Ca-talysts, 2018,8(5).Doi: 10.3390/catal8050196.
[35] Adekoya D, Chen H, Hoh H Y, et al. Hierarchical Co3O4@N-doped carbon composite as an advanced anode material for ultrastable potassium storage[J]. ACS Nano, 2020,14,5027-5035.
[36] Yang D W, Zhang C Q, Biendicho J J, et al. ZnSe/N-doped carbon nanoreactor with multiple adsorption sites for stable lithium-sulfur batteries[J]. ACS Nano 2020,14:15492-15504.
[37] Xu R, Yao Y, Wang H Y, et al. Unraveling the nature of excellent potassium storage in small-molecule Se@peapod-like N-doped car-bon nanofibers[J]. Advanced Materials, 2020,32(52).Doi: 10.1002/adma.202003879.
[38] Xu Y N, Wang K, Han J W, et al. Scalable production of wearable solid-state Li-ion capacitors from N-doped hierarchical carbon[J]. Advanced Materials, 2020,32(45).Doi: 10.1002/adma.202005531.
[39] 陈克, 孙振华, 方若翩, 等. 锂硫电池用石墨烯基材料的研究进展[J]. 物理化学学报, 2018,34(4):377-390.
[40] Yu H J, Shang L, Bian T, et al. Nitrogen-doped porous carbon nano-sheets templated from g-C3N4 as metal-free electrocatalysts for efficient oxygen reduction reaction[J]. Advanced Materials, 2016,28(25):5080-5086.
[41] Fan X J, Tan F R, Meng F C, et al. Hierarchical porous N-doped carbon nanosheets by organic-inorganic bipolymeric engineering for improved lithium-sulfur batteries[J]. Chemistry-A European Journal, 2019,25(16):4040-4046.
[42] Kong F T, Qiao Y, Zhang C Q, et al. Oriented synjournal of pyridinic yridinic synjournal of pyridournal,ulfur batteriesr batteriesthium-sulfur batteries batteriesr improved lithium-sulfur[J]. ACS Sust-ainable Chemistry & Engineering, 2020,8(28):10431-10443.
[43] Yokoyama K, Sato Y, Yamamoto M, et al. Work function,carrier type,and conductivity of nitrogen-doped single-walled carbon na-notube catalysts prepared by annealing via defluorination for effi-cient oxygen reduction reaction[J]. Carbon, 2019,142:518-527.
[44] Lemes G, Sebastián D, Pastor E, et al. N-doped graphene catalysts with high nitrogen concentration for the oxygen reduction reac-tion[J]. Journal of Power Sources, 2019,438.Doi: 10.1016/j.jpowso-ur.2019.227036.
[45] Bayram E, Yilmaz G, Mukerjee S. A solution-based procedure for synjournal of nitrogen doped graphene as an efficient electrocat alyst for oxygen reduction reactions in acidic and alkaline elec-trolytes[J]. Applied Catalysis B:Environmental, 2016,192:26-34.
[46] Zhang C M, Hou L, Cheng C F, et al. Nitrogen and phosphorus Co- doped hollow carbon spheres as efficient metal-free electrocatalys-ts for the oxygen reduction reaction[J]. Chem.Electro.Chem, 2018,5(14):1891-1898.
[47] Zhou F, Wang G J, Huang F, et al. Polyaniline derived N- and O- enriched high surface area hierarchical porous carbons as an effi-cient metal-free electrocatalyst for oxygen reduction[J]. Electrochi-mica Acta, 2017,257:73-81.
[48] Quílez-Bermejo J, Morallón E, Cazorla-Amorós D. Oxygen-reduc-tion catalysis of N-doped carbons prepared by heat treatment of polyaniline at over 1 100 ℃[J]. Chemical Communications, 2018,54(35):4441-4444.
[49] Zhu J B, Xiao M L, Song P, et al. Highly polarized carbon nano-arc-hitecture as robust metal-free catalyst for oxygen reduction in poly-mer electrolyte membrane fuel cells[J]. Nano Energy, 2018,49:23-30.
[50] Lai Q X, Zheng J, Tang Z M, et al. Optimal configuration of N-doped carbon defects in 2D turbostratic carbon nanomesh for advanced oxygen reduction electrocatalysis[J]. Angewandte Chemie Interna-tional Edition, 2020,59:11999-12006.
[51] Bie C B, Yu H G, Cheng B, et al. Design,fabrication,and mecha-nism of nitrogen-doped graphene-based photocatalyst[J]. Advanced Materials, 2021,33.Doi: 10.1002/adma.202003521.
[52] Li S W, Liu Y C, Zhao X D, et al. Sandwich-like heterostructures of MoS2/graphene with enlarged interlayer spacing and enhanced hydrophilicity as high-performance cathodes for aqueous zinc-ion batteries[J]. Advanced Materials, 2021.Doi: 10.1002/adma.202007480.
[53] Hai G T, Tao Z P, Gao H Y, et al. Targeted synjournal of covalently linked Ni-MOFs nanosheets/graphene for oxygen evolution reac-tion by computational screening of anchoring primers[J]. Nano Energy, 2021,79.Doi: 10.1016/j.nanoen.2020.105418.
[54] Choi Y, Kim H, Peng Y, et al. Correlation-driven topological phases in magic-angle twisted bilayer graphene[J]. Nature, 2021,589:536-541.
[55] Park J M, Cao Y, Watanabe K, et al. Tunable strongly coupled su-perconductivity in magic-angle twisted trilayer graphene[J]. Na-ture, 2021,590:249-255.
[56] Kim H W, Bukas V J, Park H, et al. Mechanisms of two-electron and four-electron electrochemical oxygen reduction reactions at nitrogen-doped reduced graphene oxide[J]. ACS Catalysis, 2020,10(1):852-863.
[57] Li J K, Sougrati M T, Zitolo A, et al. Identification of durable and non-durable FeNx sites in Fe-N-C materials for proton exchange membrane fuel cells[J]. Nature Catalysis, 2021,4:10-19.
[58] Xie X H, He C, Li B Y, et al. Performance enhancement and degra-dation mechanism identification of a single-atom Co-N-C catalyst for proton exchange membrane fuel cells[J]. Nature Catalysis, 2020:1044-1054.
文章导航

/