无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
无机新型材料——能源存储与转换

多级孔碳在锂硫电池正极中的研究进展

  • 宋娅 ,
  • 龙家英 ,
  • 庞驰 ,
  • 石斌 ,
  • 牟钦尧 ,
  • 邵姣婧
展开
  • 1.贵州大学材料与冶金学院 贵州贵阳 550025
    2.贵州遵义市贵州梅岭电源有限公司
    3.贵州遵义市特种化学电源国家重点实验室
宋娅(1994— ),女,博士研究生,研究方向为锂硫电池正极材料设计及制备;E-mail: SY18798448247@163.com
邵姣婧(1988— ),女,博士,教授,主要研究方向为锂电池用关键材料设计制备及应用研究;E-mail: shaojiao_jing@163.com

收稿日期: 2021-02-20

  网络出版日期: 2021-07-08

基金资助

国家自然科学基金(51972070);国家自然科学基金(52062004);贵州省科技计划项目重点类型(黔科合基础[2020]1Z042);贵州省科技支撑项目(黔科合支撑[2021]一般317);贵州大学培育项目(贵大培育[2019]01号);大学生创新创业训练计划项目(贵大国创字2019(001))

版权

《无机盐工业》编辑部, 2021, 版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

Research progress of hierarchically porous carbon in the cathode of lithium-sulfur batteries

  • Song Ya ,
  • Long Jiaying ,
  • Pang Chi ,
  • Shi Bin ,
  • Mu Qinyao ,
  • Shao Jiaojing
Expand
  • 1. School of Materials and Metallurgy,Guizhou University,Guiyang,550025,China
    2. Guizhou Meiling Power Supply Co.,Ltd.,
    3. State Key Laboratory of Advanced Chemical Power Sources

Received date: 2021-02-20

  Online published: 2021-07-08

Copyright

, 2021, Copyright reserved © 2021. Office of INORGANIC CHEMICALS INDUSTRY All articles published represent the opinions of the authors, and do not reflect the official policy of the Chinese Medical Association or the Editorial Board, unless this is clearly specified.

摘要

锂硫电池因其理论能量密度高、原材料丰富、成本低廉等优点而受到广泛关注。然而硫正极电导率低、体积膨胀、以及脱嵌锂过程中多硫化物产生的穿梭效应等问题限制了锂硫电池的商业化应用。其采用导电材料作为硫载体,一方面可缓解体积膨胀,另一方面可改善正极导电性,同时一定程度上限制多硫穿梭。多级孔碳由于具有导电性优良、结构稳定、孔径及形貌可控等优点,被认为是一种理想的硫载体。从锂硫电池的发展背景出发阐述了多级孔碳作为硫载体的研究意义,首先介绍了多级孔碳材料的制备方法如硬模板法、软模板法和活化法等,进一步介绍了碳材料中的微孔、介孔及大孔在锂硫电池中提升导电性、稳定结构和抑制多硫穿梭效应的作用机理,最后对多级孔碳作为硫载体推进锂硫电池的发展前景进行了展望。

本文引用格式

宋娅 , 龙家英 , 庞驰 , 石斌 , 牟钦尧 , 邵姣婧 . 多级孔碳在锂硫电池正极中的研究进展[J]. 无机盐工业, 2021 , 53(6) : 41 -48 . DOI: 10.19964/j.issn.1006-4990.2021-0243

Abstract

Lithium-sulfur batteries have received widespread attention due to their high theoretical energy density,abundant raw materials,and low cost.However, the low electrical conductivity and large volume expansion of sulfur cathode, and the shuttle effect of polysulfides in the process of de/intercalating lithium-ion hinder the commercial application of lithium-sulfur batteries.Combining the conductive materials as the sulfur carrier not only relieves volume expansion of sulfur cathode but also improves the conductivity of the positive electrode while restricting the shuttle of polysulfides to a certain extent.Hierarchical porous carbon is considered to be an ideal sulfur cathode carrier for its good conductivity,stable structure,controllable pore size,and morphology.Based on the development background of lithium-sulfur batteries,the research significance of hierarchical porous carbon as a sulfur carrier was explained.First,the preparation methods of hierarchical porous carbon materials such as hard template method,soft template method and activation method were introduced.The mechanism of micropores,mesopores and macropores in carbon materials in improving conductivity,stabi-lizing structure and inhibiting polysulfides shuttle effect in lithium-sulfur batteries was introduced.Finally, the prospects of hierarchical porous carbon was used as a sulfur carrier to promote the development of lithium-sulfur batteries were looked forward.

参考文献

[1] 韩啸, 张成锟, 吴华龙, 等. 锂离子电池的工作原理与关键材料[J]. 金属功能材料, 2021,28(2):37-58.
[2] 刘红锐, 郭奕旋, 张开翔, 等. 一种串联锂离子电池二重能量高实效均衡器研究[J]. 昆明理工大学学报:自然科学版, 2021,36(2):1-12.
[3] 闫雅婧. 锂离子电池用固态电解质的研究现状与展望[J]. 无机盐工业, 2020,52(7):22-25.
[4] 阮丁山, 李斌, 毛林林, 等. 钴酸锂作为锂离子正极材料研究进展[J]. 电源技术, 2020,44(9):1387-1390.
[5] 孙宏达, 周森, 苏畅. 高电压钴酸锂(LCO)正极材料研究现状[J]. 辽宁化工, 2021,50(2):197-200.
[6] Hun X F, Xu Y. The improved performance of spinel LiMn2O4 catho-de with micro-nanostructured sphere-interconnected-tube morpholo-gy and surface orientation at extreme conditions for lithium-ion bat-teries[J]. Electrochimica Acta, 2020,358.Doi:10.1016/j.electacta.2020.136901.
[7] 焦建超, 朱玉鑫, 彭晓薇, 等. 十二烷基硫酸钠辅助制备高电容性能多孔碳[J]. 新型炭材料, 2021.Doi:10.6023/A21010007.
[8] Li W, Yang L, Li Y, et al. Ultra-thin AlPO4 layer coated LiNi0.7Co0.15Mn0.15O2 cathodes with enhanced high-voltage and high-temperature performance for lithium-ion half/full batteries[J]. Frontiers in Chemistry, 2020,8.Doi: 10.3389/fchem.2020.00597.
[9] 曲江英, 于志强, 臧云浩, 等. 自组装CoMn2O3.5-RGO微米立方体类Fenton催化剂及其染料降解性能[J]. 新型炭材料, 2019,34(6):539-545.
[10] Liu P, Zhang Y, Dong P, et al. Direct regeneration of spent LiFePO4 cathode materials with pre-oxidation and V-doping[J]. Journal of Alloys and Compounds, 2021,860.Doi:10.1016/j.jallcom.2020.157909.
[11] 崔肖, 张正富, 王劲松, 等. 金属有机骨架及其衍生结构在锂硫电池中的应用[J]. 能源研究与管理, 2021(1):104-109,117.
[12] 李丽波, 单宇航. 石墨烯及其复合材料在锂硫电池中抑制穿梭效应的应用进展(英文)[J]. 新型炭材料, 2021,36(2):336-349.
[13] 张茜, 徐彦, 蔡泽玮, 等. PDA源多孔碳的制备及其电化学性能[J/OL]. 浙江理工大学学报:自然科学版, 2021. https://kns.cnki.net/kcms/detail/33.1338.TS.20210330.1148.004.html.
[14] Cai W L, Song Y Z, Fang Y T, et al. Defect engineering on carbon black for accelerated Li-S chemistry[J]. Nano Research, 2020,13(12):3315-3320.
[15] 刘勇志, 王勇, 王聪伟, 等. 石墨烯应用于锂硫电池的研究进展[J]. 新型炭材料, 2020,35(1):1-11.
[16] 田月茹, 张露, 顾元香. 用作锂电池负极材料的多孔生物质碳的合成及表征[J]. 广州化工, 2021,49(6):45-47.
[17] 王学慧, 张文哲, 王焕磊, 等. 先进碳材料在钾离子电池中的应用[J]. 硅酸盐学报, 2021.Doi:10.14062/j.issn.0454-5648.20200672.
[18] 武志红, 蒙真真, 邓悦, 等. 分级多孔碳复合吸波材料研究进展[J]. 硅酸盐学报, 2021.Doi:10.14062/j.issn.0454-5648.20200606.
[19] 张魏栋, 范磊, 朱守圃, 等. 高容量锂硫电池近期研究进展[J]. 储能科学与技术, 2017,6(3):534-549.
[20] Knox J H, Kaur B, Millward G R. Structure and performance of por-ous graphitic carbon in liquid chromatography[J]. Journal of Chro-matography A, 1986,352:3-25.
[21] Wang R X, Wang K L, Gao S, et al. Rational design of yolk-shell silicon dioxide@hollow carbon spheres as advanced Li-S cathode hosts[J]. Nanoscale, 2017,9(39):14881-14887.
[22] Wang B, Wang G, Wang H, et al. Hierarchically porous carbon na-nofibers encapsulating carbon-coated mini hollow FeP nanoparti-cles for high performance lithium and sodium ion batteries[J]. ChemNanoMat, 2018,4(9):924-935.
[23] Jiang H, Liu X C, Wu Y, et al. Metal-organic frameworks for high charge-discharge rates in lithium-sulfur batteries[J]. Angewandte Chemie, 2018,57(15):3916-3921.
[24] Zhu W, Lei D, Li Y, et al. Hierarchical,nitrogenous hollow carbon spheres filled with porous carbon nanosheets for use as efficient sulfur hosts for lithium-sulfur batteries[J]. Journal of Alloys and Compounds, 2020,836.Doi:10.1016/j.jallcom.2020.155295.
[25] Zhang F, Zong S, Zhang Y, et al. Preparation of hollow mesoporous carbon spheres by pyrolysis-deposition using surfactant as carbon precursor[J]. Journal of Power Sources, 2021.Doi:10.1016/j.jpo-wsour.2020.229274.
[26] Liang C, Hong K, Guiochon G A, et al. Synjournal of a large-scale hi-ghly ordered porous carbon film by self-assembly of block copoly-mers[J]. Angewandte Chemie International Edition, 2004,43(43):5785-5789.
[27] Chu P P, and Wu H D. Solid state NMR studies of hydrogen bond-ing network formation of novolac type phenolic resin and poly(ethylene oxide) blend[J]. Polymer, 1999,41(1):101-109.
[28] Nita C, Bensafia M, Vaulot C, et al. Insights on the synjournal mech-anism of green phenolic resin derived porous carbons via a salt-soft templating approach[J]. Carbon, 2016,109:227-238.
[29] Fei H F, Li W H, Bhardwaj A, et al. Ordered nanoporous carbons with broadly tunable pore size using bottlebrush block copolymer templates[J]. Journal of the American Chemical Society, 2019,141(42):17006-17014.
[30] Liu X, Antonietti M. Molten salt activation for synjournal of porous carbon nanostructures and carbon sheets[J]. Carbon, 2014,69:460-466.
[31] 陶颖卿, 孔振凯, 魏艳菊, 等. 中孔炭微球/MoS2/S复合正极材料的制备及其电化学性能[J]. 新型炭材料, 2019,34(4):349-357.
[32] 徐莹, 高荣, 金士威. 有序介孔碳和活性炭对阿莫西林的吸附研究[J]. 无机盐工业, 2020,52(10):140-144.
[33] Guan L, Hu H, Li L Q, et al. Intrinsic defect-rich hierarchically po-rous carbon architectures enabling enhanced capture and catalytic conversion of polysulfides[J]. ACS Nano, 2020,14(5):6222-6231.
[34] Xu J X, Du G, Xie L, et al. Three-dimensional walnut-like,hierar-chically nanoporous carbon microspheres:One-pot synjournal,ac-tivation,and supercapacitive performance[J]. ACS Sustainable Chemistry & Engineering, 2020,8(21):8024-8036.
[35] 张蒙蒙. 多孔碳材料的制备及其在锂硫电池中的应用[D]. 西安:西安理工大学, 2020.
[36] Rehman S, Guo S, Hou Y. Rational design of Si/SiO2 @hierarchical porous carbon spheres as efficient polysulfide reservoirs for high-performance Li-S battery[J]. Advanced materials, 2016,28(16):3167-3172.
[37] Xin S, Gu L, Zhao N H, et al. Smaller sulfur molecules promise be-tter lithium-sulfur batteries[J]. Journal of the American Chemical Society, 2012,134(45):18510-18513.
[38] Jin F Y, Xiao S, Lu L J, et al. Efficient activation of high-loading sulfur by small CNTs confined inside a large CNT for high-capacity and high-rate lithium-sulfur batteries[J]. Nano Letters, 2016,16(1):440-447.
[39] Du Y, Huang R K, Lin X D, et al. Template-free preparation of hi-erarchical porous carbon nanosheets for lithium-sulfur battery[J]. Langmuir, 2020,36(48):14507-14513.
[40] Tang H, Li W, Pan L, et al. A Robust,Freestanding MXene-sulfur conductive paper for long-lifetime Li-S batteries[J]. Advanced Functional Materials, 2019,29(30).Doi:10.1002/adfm.201901907.
[41] Wei C H, Tian M, Wang M L, et al. Universal in situ crafted MOx- MXene heterostructures as heavy and multifunctional hosts for 3D- printed Li-S batteries[J]. ACS Nano, 2020,14(11):16073-16084.
[42] Liu R Q, Liu W H, Bu Y L, et al. Conductive porous laminated va-nadium nitride as carbon-free hosts for high-loading sulfur cathod-es in lithium-sulfur batteries[J]. ACS Nano, 2020,14(12):17308-17320.
[43] Li B Y, Su Q M, Yu L T, et al. Tuning the band structure of MoS2 via Co9S8@MoS2 core-shell structure to boost catalytic activity for lithium-sulfur batteries[J]. ACS Nano, 2020,14(12):17285-17294.
[44] Wu H, Tang Q, Fan H, et al. Dual-confined and hierarchical-porous graphene/C/SiO2 hollow microspheres through spray drying appro-ach for lithium-sulfur batteries[J]. Electrochimica Acta, 2017,255:179-186.
[45] Wang S Z, Chen H Y, Liao J X, et al. Efficient trapping and cataly-tic conversion of polysulfides by VS4 nanosites for Li-S batteri-es[J]. ACS Energy Letters, 2019,4(3):755-762.
文章导航

/