磷酸铁锂正极材料的制备及性能强化研究进展
收稿日期: 2021-04-09
网络出版日期: 2021-07-08
基金资助
国家自然科学基金(U20A20142);国家自然科学基金(21978094);青海省重大科技专项(2019-GX-A7)
Research progress in synthesis and performance enhancement of LiFePO4 cathode materials
Received date: 2021-04-09
Online published: 2021-07-08
张婷 , 林森 , 于建国 . 磷酸铁锂正极材料的制备及性能强化研究进展[J]. 无机盐工业, 2021 , 53(6) : 31 -40 . DOI: 10.19964/j.issn.1006-4990.2021-0212
Olivine LiFePO4 is one of the most widely used cathode materials for lithium-ion batteries,with characteristics of low cost,high safety,environment-friendly,long cycle life and stable operating voltage.In recent years,with the breakthrough of CTP technology and blade battery technology,its commercialization progress has been greatly improved.However,LiFePO4 has the defects of poor electronic conductivity and low ion diffusion coefficient,which seriously limits the electrochemical capacity of lithium-ion battery.It is of great significance to study on the preparation process and performance enhancement of LiFePO4. In this paper,the differences of performance and development status of LiFePO4 and other cathode materials for lithium-ion batteries were compared.The modification methods of preparation and strengthening of LiFePO4 cathode materials and related research progress and challenges were systematically summarized,and the future development direction and research ideas were put forward.
[1] | 田柳文, 于华, 章文峰, 等. 锂离子电池的明星材料磷酸铁锂: 基本性能、优化改性及未来展望[J]. 材料导报, 2019,33(21):3561-3579. |
[2] | Chung S Y, Bloking J T, Chiang Y M. Electronically conductive pho-spho-olivines as lithium storage electrodes[J]. Nat.Mater., 2002,1(2):123-128. |
[3] | Zheng J M, Myeong S J, Cho W R, et al. Li-and Mn-rich cathode ma-terials:Challenges to commercialization[J]. Advanced Energy Mate-rials, 2017,7(6).Doi: 10.1002/aenm.201601284. |
[4] | Yan B G, Lin S N, Kang L, et al. Spinel structured LiMn2O4 prepared by laser annealing[J]. Materials Technology, 2020,35(9/10):606-611. |
[5] | Liu S, Yan P, Li H, et al. One-step microwave synjournal of micro/ nanoscale LiFePO4/graphene cathode with high performance for lithium-ion batteries[J]. Front.Chem., 2020,8.Doi: 10.3389/fchem.2020.00104. |
[6] | Gong C L, Xue Z G, Wen S, et al. Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries[J]. Journal of Power Sources, 2016,318:93-112. |
[7] | Gu R, Qian R C, Lyu Yingchun, et al. One-step integrated comodifi-cation to improve the electrochemical performances of high-voltage LiCoO2 for lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2020,8(25):9346-9355. |
[8] | Amatucci G. Cobalt dissolution in LiCoO2 based non-aqueous rechar-geable batteries[J]. Solid State Ionics, 1996,83(1/2):167-173. |
[9] | Wang J J, Sun X L. Olivine LiFePO4:The remaining challenges for future energy storage[J]. Energy & Environmental Science, 2015,8(4):1110-1138. |
[10] | Padhi A K, Goodenough J B, Nanjundaswamy K S. Phospho-olivines as positive electrode materials for rechargeable lithium batteri-es[J]. J Electrochem.Soc., 1997,144(4):1188-1194. |
[11] | Yang S F, Song Y N, Zavalij P Y, et al. Reactivity,stability and electrochemical behavior of lithium iron phosphates[J]. Electro-chem Commun, 2002,4(3):239-244. |
[12] | Ouyang C Y, Shi S Q, Wang Z X, et al. First-principles study of Li ion diffusion in LiFePO 4[J]. Physical Review B, 2004,69(10):1-5. |
[13] | Chen J, Wang S, Whittingham M S. Hydrothermal synjournal of cat-hode materials[J]. Journal of Power Sources, 2007,174(2):442-448. |
[14] | Fisher C A J, Islam M S. Surface structures and crystal morpholo-gies of LiFePO4:Relevance to electrochemical behaviour[J]. Jour-nal of Materials Chemistry, 2008,18(11):1209-1215. |
[15] | 卢俊彪, 张中太, 唐子龙, 等. 一种新型的锂离子电池正极材料——LiFePO4[J]. 稀有金属材料与工程, 2004,33(7):679-683. |
[16] | Zhang W J. Structure and performance of LiFePO4 cathode materi-als:A review[J]. Journal of Power Sources, 2011,196(6):2962-2970. |
[17] | Yuan L X, Wang Z H, Zhang W X, et al. Development and challen-ges of LiFePO4 cathode material for lithium-ion batteries[J]. En-ergy Environ.Sci., 2011,4(2):269-284. |
[18] | Jiang J, Dahn J R. ARC studies of the thermal stability of three different cathode materials:LiCoO2;Li[Ni0.1Co0.8Mn0.1]O2;and LiFePO4,in LiPF6 and LiBoB EC/DEC electrolytes[J]. Electrochem Commun, 2004,6(1):39-43. |
[19] | Dahn J R, Fuller E W, Obrovac M, et al. Thermal stability of LixCoO2,LixNiO2 and λ-MnO2 and consequences for the safety of Li-ion cells[J]. Solid State Ionics, 1994,69(3):265-270. |
[20] | Takahashi M, Tobishima S, Takei K, et al. Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteri-es[J]. Solid State Ionics, 2002,148(3/4):283-289. |
[21] | Ven A V D, Ceder G. Ordering in Lix(Ni0.5Mn0.5)O2 and its relation to charge capacity and electrochemical behavior in rechargeable li-thium batteries[J]. Electrochem.Commun., 2004,6(10):1045-1050. |
[22] | Islam M S, Driscoll D J, Fisher C A J, et al. Atomic-scale investiga-tion of defects,dopants,and lithium transport in the LiFePO4 olioli-vine-type battery material[J]. Chemistry of Materials, 2005,17(20):5085-5092. |
[23] | Nishimura S, Kobayashi G, Ohoyama K, et al. Experimental visua-lization of lithium diffusion in LixFePO4[J]. Nat.Mater., 2008,7(9):707-711. |
[24] | Amin R, Maier J, Balaya P, et al. Ionic and electronic transport in single crystalline LiFePO4 grown by optical floating zone tech-nique[J]. Solid State Ionics, 2008,179(27/28/29/30/31/32):1683-1687. |
[25] | Boulfelfel S E, Seifert G, Leoni S. Atomistic investigation of Li+ di-ffusion pathways in the olivine LiFePO4 cathode material[J]. Jo-urnal of Materials Chemistry, 2011,21(41):16365-16372. |
[26] | Yang Jianjun, Tse J S. Li ion diffusion mechanisms in LiFePO4:An ab initio molecular dynamics study[J]. The Journal of Physical Chemistry A, 2011,115(45):13045-13049. |
[27] | 姚斌. 磷酸铁锂低温相变行为及改性研究[D]. 济南:山东大学, 2015. |
[28] | 惠乐, 唐子龙, 罗绍华, 等. 溶胶凝胶法制备LiFePO4正极材料[J]. 化学进展, 2007,19(10):1460-1466. |
[29] | 甘晖, 童庆松, 汪冰冰, 等. 锂离子蓄电池正极活性材料磷酸亚铁锂[J]. 电源技术, 2003,27(3):339-342. |
[30] | Andersson A S, Thomas J O. The source of first-cycle capacity loss in LiFePO4[J]. Journal of Power Sources, 2001(97/98):498-502. |
[31] | Zhao T, Zhang X J, Li X, et al. Crystallinity dependence of electro-chemical properties for LiFePO4[J]. Rare Metals, 2015,34(5):334-337. |
[32] | Wang J, Shao Z B, Ru H Q. Influence of carbon sources on LiFePO 4/C composites synthesized by the high-temperature high-energy ball milling method[J]. Ceramics International, 2014,40(5):6979-6985. |
[33] | Kozawa T, Kataoka N, Kondo A, et al. One-step mechanical synthe-sis of LiFePO4/C composite granule under ambient atmosphere[J]. Ceramics International, 2014,40(10):16127-16131. |
[34] | 梁亚春. 纳米化锂电池正极材料磷酸铁锂的研究[D]. 成都:电子科技大学, 2017. |
[35] | 俞琛捷, 莫祥银, 康彩荣, 等. 锂离子电池磷酸铁锂正极材料的制备及改性研究进展[J]. 材料科学与工程学报, 2011,29(3):468-470,454. |
[36] | Higuchi M, Katayama K, Azuma Y, et al. Synjournal of LiFePO4 ca-thode material by microwave processing[J]. Journal of Power So-urces, 2003,119:258-261. |
[37] | Park K S, Son J T, Chung H T, et al. Synjournal of LiFePO4 by co-precipitation and microwave heating[J]. Electrochem.Commun., 2003,5(10):839-842. |
[38] | Wu Y N, Zhou L, Xu G Q, et al. Preparation of high tap density LiFePO4/C through carbothermal reduction process using beta-cyclodextrin as carbon source[J]. International Journal of Electro-chemical Science, 2018,13(3):2958-2968. |
[39] | Wang Y F, Luo S H, Yan S X, et al. Carbothermal reduction of LiFePO4/C composite cathodes using acid-washed iron red as raw material through carboxylic acid pyrolysis reducing gas participa-tion strategies[J]. Electrochim Acta, 2020,363.Doi: 10.1016/j.electacta.2020.137159. |
[40] | Wang Y L, Wang Y F, Luo S H, et al. Preparation of high performa-nce LiFePO4/C by extracting iron element from iron tailings by concentrated sulfuric acid hot dip method[J]. Ionics, 2020,26(4):1645-1655. |
[41] | Yuan Z Y, Xue Y F, Sun L N, et al. LiFePO4/RGO composites synt-hesized by a solid phase combined with carbothermal reduction method[J]. Ferroelectrics, 2018,528(1):1-7. |
[42] | Wang X Y, Wen L Z, Zheng Y, et al. Effect of FeSO4 purity on low temperature performance of LiFePO4/C[J]. Ionics, 2020,26(9):4433-4442. |
[43] | Chen C, Chen Q Q, Li Y W, et al. Microspherical LiFePO3.98F0.02/ 3DG/C as an advanced cathode material for high-energy lithium-ion battery with a superior rate capability and long-term cyclabi-lity[J]. Ionics, 2021,27(1):1-11. |
[44] | Wang Y H, Mei R, Yang X M. Enhanced electrochemical properti-ies of LiFePO4/C synthesized with two kinds of carbon sources,PEG-4000 (organic) and Super p(inorganic)[J]. Ceramics Inte-rnational, 2014,40(6):8439-8444. |
[45] | Shi M, Li R W, Liu Y L. In situ preparation of LiFePO4/C with uni-que copolymer carbon resource for superior performance lithium-ion batteries[J]. Journal of Alloys and Compounds, 2021,854.Doi: 10.1016/j.jallcom.2020.157162. |
[46] | Zhaoxia C, Guangshuang Z, Ruirui Z, et al. Biological phytic acid guided formation of monodisperse large-sized carbon@LiFePO4/graphene composite microspheres for high-performance lithium-ion battery cathodes[J]. Chemical Engineering Journal, 2018,351:382-390. |
[47] | Zhou W Z, Liu C Y, Wen Z F, et al. Effects of defect chemistry and kinetic behavior on electrochemical properties for hydrothermal synjournal of LiFePO4/C cathode materials[J]. Materials Chemistry and Physics, 2019,227:56-63. |
[48] | Johnson I D, Lubke M, Wu O Y, et al. Pilot-scale continuous synt-hesis of a vanadium-doped LiFePO4 /C nanocomposite high-rate cathodes for lithium-ion batteries[J]. Journal of Power Sources, 2016,302:410-418. |
[50] | Chen L J, Feng W J, Pu Z S, et al. Impact of pH on preparation of LiFePO4@C cathode materials by a sol-gel route assisted by bio-mineralization[J]. Ionics, 2019,25(12):5625-5632. |
[51] | Liu H C, Wang Y M, Hsieh C C. Optimized synjournal of Cu-doped LiFePO4/C cathode material by an ethylene glycol assisted co-pre-cipitation method[J]. Ceramics International, 2017,43(3):3196-3201. |
[52] | Guo F, Kong Z, Wang T, et al. Porous microspheres consisting of carbon-modified LiFePO4 grains prepared by a spray-drying assist-ed approach using cellulose as carbon source[J]. Ionics, 2020,26(6):2737-2746. |
[53] | Xi Y M, Lu Y C. Toward uniform in situ carbon coating on nano-LiFePO4 via a solid-state reaction[J]. Industrial & Engineering Chemistry Research, 2020,59(30):13549-13555. |
[54] | Alsamet M A M M, Burgaz E. Synjournal and characterization of nano-sized LiFePO4 by using consecutive combination of sol-gel and hydrothermal methods[J]. Electrochim Acta, 2021,367.Doi: 10.1016/j.electacta.2020.137530. |
[55] | Cao Z X, Sang M, Chen S N, et al. In situ constructed(010)-orient-ed LiFePO4 nanocrystals/carbon nanofiber hybrid network:Facile synjournal of free-standing cathodes for lithium-ion batteries[J]. Electrochim Acta, 2020,333.Doi: 10.1016/j.electacta.2019.135538. |
[56] | Fei T, Chen M, Li G, et al. Synergism of ionic liquid and surfactant molecules in the growth of LiFePO4 nanorods and the electroche-mical performances[J]. Journal of Power Sources, 2012,202:384-388. |
[57] | Shao D Q, Wang J X, Dong X T, et al. Preparation and electroche-mical performances of LiFePO4/C composite nanobelts via facile electrospinning[J]. Journal of Materials Science:Materials in Elec-tronics, 2014,25(2):1040-1046. |
[58] | Wang G X, Shen X P, Yao J. One-dimensional nanostructures as electrode materials for lithium-ion batteries with improved electro-chemical performance[J]. Journal of Power Sources, 2009,189(1):543-546. |
[59] | Eftekhari A. LiFePO4/C nanocomposites for lithium-ion batteries[J]. Journal of Power Sources, 2017,343:395-411. |
[60] | Zhang Y, Jiao Y D, Liao M, et al. Carbon nanomaterials for flexible lithium ion batteries[J]. Carbon, 2017,124:79-88. |
[61] | Zhang B A, Kang F Y, Tarascon J M, et al. Recent advances in elec-trospun carbon nanofibers and their application in electrochemical energy storage[J]. Progress in Materials Science, 2016,76:319-380. |
[62] | Wang H K, Yang X M, Wu Q Z, et al. Encapsulating silica/antimony into porous electrospun carbon nanofibers with robust structure stability for high-efficiency lithium storage[J]. ACS Nano, 2018,12(4):3406-3416. |
[63] | Weng W, Kurihara R, Wang J, et al. Electrospun carbon nanofiber-based composites for lithium-ion batteries:Structure optimization towards high performance[J]. Composites Communications, 2019,15:135-148. |
[64] | Dimesso L, Spanheimer C, Jaegermann W, et al. LiFePO4-3D car-bon nanofiber composites as cathode materials for Li-ions batteries[J]. Journal of Applied Physics, 2012,111(6):555-558. |
[65] | Wang X F, Feng Z J, Huang J T, et al. Graphene-decorated carbon-coated LiFePO4 nanospheres as a high-performance cathode material for lithium-ion batteries[J]. Carbon, 2018,127:149-157. |
[66] | Luo W B, Chou S L, Zhai Y C, et al. Self-assembled graphene and LiFePO4 composites with superior high rate capability for lithium ion batteries[J]. Journal of Materials Chemistry A, 2014,2(14):4927-4931. |
[67] | Liu W, Song M S, Kong B, et al. Flexible and stretchable energy storage:Recent advances and future perspectives[J]. Adv Mater, 2017,29(1).Doi: 10.1002/adma.201603436. |
[68] | Park S, Oh J, Kim J M, et al. Facile preparation of cellulose nano-fiber derived carbon and reduced graphene oxide co-supported LiFePO4 nanocomposite as enhanced cathode material for lithium-ion battery[J]. Electrochim Acta, 2020,354.Doi: 10.1016/j.electa-cta.2020.136707. |
[69] | Guan Y B, Shen J R, Wei X F, et al. High-rate performance of a three-dimensional LiFePO4/graphene composite as cathode materi-al for Li-ion batteries[J]. Applied Surface Science, 2019,481:1459-1465. |
[70] | Li B Q, Zhao W, Zhang C, et al. Monodispersed LiFePO4@C core-Core-shell nanoparticles anchored on 3D carbon cloth for high-rate performance binder-free lithium ion battery cathode[J]. Journal of Nanomaterials, 2020.Doi: 10.1155/2020/2607017. |
[71] | Oh J, Lee J, Jeon Y, et al. Melamine foam-derived N-doped carbon framework and graphene-supported LiFePO4 composite for high performance lithium-ion battery cathode material[J]. ACS Susta-inable Chemistry & Engineering, 2019,7(1):306-314. |
[72] | Ou J K, Yang L, Jin F, et al. High performance of LiFePO4 with ni-trogen-doped carbon layers for lithium ion batteries[J]. Advanced Powder Technology, 2020,31(3):1220-1228. |
[73] | Wang X F, Feng Z J, Hou X L, et al. Fluorine doped carbon coating of LiFePO4 as a cathode material for lithiumion batteries[J]. Che-mical Engineering Journal, 2020,379.Doi: 10.1016/j.cej.2019.122371. |
[74] | Li C L, Xie Y C, Zhang N S, et al. Optimization of LiFePO4 cathode material based on phosphorus doped graphite network structure for lithium ion batteries[J]. Ionics, 2019,25(3):927-937. |
[75] | Li Y, Wang L, Zhang K Y, et al. An encapsulation of phosphorus doped carbon over LiFePO4 prepared under vacuum condition for lithium-ion batteries[J]. Vacuum, 2021,184.Doi: 10.1016/j.vacu-um.2020.109935. |
[76] | Wang W, Tang M Q, Yan Z W. Superior Li-storage property of an advanced LiFePO4@C/S-doped graphene for lithium-ion batteri-es[J]. Ceramics International, 2020,46(14):22999-3005. |
[77] | Wagemaker M, Ellis B L, Lützenkirchen-Hecht D, et al. Proof of supervalent doping in olivine LiFePO4[J]. Chemistry of Materials, 2008,20(20):6313-6315. |
[78] | Meethong N, Kao Y H, Carter W C, et al. Comparative study of lithium transport kinetics in olivine cathodes for Li-ion batteries[J]. Che-mistry of Materials, 2010,22(3):1088-1097. |
[79] | Guan S Q, Hu Z H, Dong Y, et al. A facile solvothermal synjournal of Mn-doped LiFePO4 nanoplates with improved electrochemical performances[J]. Ionics, 2021,27(1):21-30. |
[80] | Zhao S N, Wen L, Liu J L, et al. Mn-doped LiFePO4/C Composite with excellent high-rate performance as lithium ion batteries ca-thode[J]. International Journal of Electrochemical Science, 2020,15(9):8873-8882. |
[81] | Li Z F, Ren X, Zheng Y, et al. Effect of Ti doping on LiFePO4/C cathode material with enhanced low-temperature electrochemical performance[J]. Ionics, 2020,26(4):1599-1609. |
[82] | Liu W M, Wang W G, Qin M L, et al. Well-dispersed multi-doped LiFePO4/C composite with excellent electrochemical properties for lithium-ion batteries[J]. International Journal of Electrochemical Science, 2020,15(6):5404-5415. |
[83] | Zhang Y, Alarco J A, Nerkar J Y, et al. Observation of preferential cation doping on the surface of LiFePO4 particles and its effect on properties[J]. ACS Applied Energy Materials, 2020,3(9):9158-9167. |
[84] | Pignanelli F, Romero M, Mombrú D, et al. Insights of cobalt doping on carbon-coated LiFePO4 olivine nanoparticles prepared by citric acid combustion route as cathodes for lithium batteries[J]. Ionics, 2019,25(8):3593-3601. |
[85] | Li X T, Shao Z B, Liu K R, et al. Enhancement of Nb-doping on the properties of LiFePO4/C prepared via a high-temperature ball milling-based method[J]. Journal of Solid State Electrochemistry, 2019,23(2):465-473. |
[86] | Nugraha I M A, Noerochim L, Susanti D. High stability on n-doped LiFePO4/C as cathode of lithium-ion battery[C]//. International Conference on Science and Applied Science,2019.US,AlP Conference Proceedings, 2019.Doi: 10.1063/1.5141666. |
[87] | Noerochim L, Ramadhani A I, Susanti D. High electrochemical per-formance of F-doped LiFePO4 as cathode for lithium-ion batte-ry[C]//International Conference on Science and Applied Science, 2019.US,AlP Conference Proceedings, 2019.Doi: 10.1063/1.5141665. |
/
〈 |
|
〉 |