氧缺陷三氧化钨纳米线阵列高效电催化合成氨
收稿日期: 2020-08-22
网络出版日期: 2021-05-12
基金资助
贵州省教育厅自然科学基金项目(黔教合KY字[2016]110);贵州省教育厅自然科学基金项目([2015]342);贵州省教育厅自然科学基金项目([2019]213);贵州省教育厅自然科学基金项目([2019]216);贵州省科技厅联合基金项目(黔科合J字LKQS[2013]08号);贵州省科技厅联合基金项目(黔科合LH字[2015]7715);贵州省科技厅联合基金项目(黔科合J字LKQS[2013]06号)
High efficiency electrocatalytic synthesis of ammonia by oxygen deficient WO3 nanowire arrays
Received date: 2020-08-22
Online published: 2021-05-12
曹茂启 , 龙成梅 , 孙赛兰 , 徐平 , 吴大旺 . 氧缺陷三氧化钨纳米线阵列高效电催化合成氨[J]. 无机盐工业, 2021 , 53(5) : 100 -104 . DOI: 10.11962/1006-4990.2020-0361
Considering the significant influence of ammonia on food,chemical industry and energy,the effective activation of inert N2 production of ammonia plays an important role in modern society.Introducing defects into the crystal structure to regu-late the chemical and physical properties of materials is an effective strategy to improve the electrocatalytic performance of ma-terials.The Ar+ plasma bombardment strategy was used to generate abundant oxygen defects on WO3 nanowire arrays(V-WO3). The electrocatalytic activation of N≡N bond by V-WO3 nanowire arrays was used to achieve efficient direct ammonia syn-thesis under environmental conditions.X-ray photoelectron spectroscopy(XPS) of oxygen element showed that V-WO3 catalyst was rich in oxygen defects,which led to the efficient electrocatalytic conversion of N2 to NH3.
Key words: WO3; oxygen defect; electrocatalytic synthesis of ammonia
[1] | 程加林, 池永庆, 贾攀锋, 等. 通氨提纯氯化铵转化法制取硫酸钾新工艺研究[J]. 无机盐工业, 2019,51(10):56-59. |
[2] | 徐梓淮, Nafiu Sadi Bature, 范天博, 等. 铵(氨)循环工艺-碳氨法制备碳酸钙的研究[J]. 无机盐工业, 2019,51(4):32-36. |
[3] | 孙娜, 尤彩霞, 胡亚伟, 等. 磷尾矿氨循环法分离钙镁制取氢氧化镁碳酸钙的研究[J]. 无机盐工业, 2018,50(3):57-59. |
[4] | Licht S, Cui B, Wang B, et al. Ammonia synjournal by N2 and steam elec-trolysis in molten hydroxide suspensions of nanoscale Fe2O3[J]. Science, 2014,345(6197):637-640. |
[5] | Singh A R, Rohr B A, Schwalbe J A, et al. Electrochemical ammonia synjournal—The selectivity challenge[J]. ACS Catalysis, 2016,7(1):706-709. |
[6] | Suryanto B H R, Du H L, Wang D, et al. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia[J]. Nature Catalysis, 2019,2(4):290-296. |
[7] | Zhang L, Ji X, Ren X, et al. Electrochemical ammonia synjournal via nitrogen reduction reaction on a MoS2.catalyst:Theoretical and ex-perimental studies[J]. Advanced Materials, 2018,30(28).Doi: 10.1002/adma.201800191. |
[8] | Yang X, Nash J, Anibal J, et al. Mechanistic insights into electro-chemical nitrogen reduction reaction on vanadium nitride nanopar-ticles[J]. Journal of the American Chemical Society, 2018,140(41):13387-13391. |
[9] | Wang L, Xia M, Wang H, et al. Greening ammonia toward the solar ammonia refinery[J]. Joule, 2018,2(6):1055-1074. |
[10] | Foster S L, Bakovic S I P, Duda R D, et al. Catalysts for nitrogen reduction to ammonia[J]. Nature Catalysis, 2018,1(7):490-500. |
[11] | Hou T, Xiao Y, Cui P, et al. Operando oxygen vacancies for enhan-ced activity and stability toward nitrogen photofixation[J]. Advabced Energy Materials, 2019,9(43).Doi: 10.1002/aenm.201902319. |
[12] | Lawrence N J, Brewer J R, Wang L, et al. Defect engineering in cu-bic cerium oxide nanostructures for catalytic oxidation[J]. Nano Letters, 2011,11(7):2666-2671. |
[13] | Xu L, Jiang Q, Xiao Z, et al. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolu-tion reaction[J]. Angewandte Chemie International Edition, 2016,55(17):5277-5281. |
/
〈 |
|
〉 |