无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
综述与专论

新型海洋材料在储能领域的应用进展

  • 范泽会 ,
  • 张辰 ,
  • 袁博 ,
  • 凌国维
展开
  • 1.天津大学海洋科学与技术学院,天津 300072
    2.联合泰泽环境科技发展有限公司
范泽会(1996— ),男,硕士,主要研究方向为海洋能源材料;E-mail: zehuifan@tju.edu.cn

收稿日期: 2020-08-17

  网络出版日期: 2021-05-12

基金资助

国家自然科学基金:锂硫电池中石墨烯基致密化电极的可控构建及储能机制研究(U1710109)

Application progress of new type marine materials in energy storage field

  • Zehui Fan ,
  • Chen Zhang ,
  • Bo Yuan ,
  • Guowei Ling
Expand
  • 1. School of Marine Science and Technology,Tianjin University,Tianjin 300072,China
    2. Lianhe Taize Environmental Science and Technology Development Co.,Ltd.

Received date: 2020-08-17

  Online published: 2021-05-12

摘要

能源与环境是世界发展的两大议题。海洋资源丰富,蕴含结构多样、性质丰富的生物质材料、矿物材料等,在储能领域展现出良好的应用前景。对新型海洋材料,如海洋生物质材料、衍生碳功能材料和海洋矿物材料等在储能领域的应用做了系统评述。海洋生物质材料自然界储量丰富、环境友好,被广泛应用于储能体系的黏结剂等功能组分;海洋生物质碳化材料富含丰富的孔隙结构,作为先进电极显示出优异的应用潜力;海底矿物材料被作为电极材料和模板材料应用于储能体系中,海底矿物的开采是其未来应用的重要技术保障。对新型海洋材料的类型以及在储能领域中的应用形式做了总结,并对海洋与能源的交叉发展做了展望,以期进一步推动新型海洋材料的可持续利用。

本文引用格式

范泽会 , 张辰 , 袁博 , 凌国维 . 新型海洋材料在储能领域的应用进展[J]. 无机盐工业, 2021 , 53(5) : 7 -12 . DOI: 10.11962/1006-4990.2020-0353

Abstract

Energy and environment are two major topics of world development.Marine resources are rich in biomass materials and mineral materials with various structures and properties,which show a good application prospect in the field of energy storage.The applications of new type marine materials,such as marine biomass materials,derived carbon functional materials and marine mineral materials in the field of energy storage were systematically reviewed.Marine biomass materials are rich in natural reserves and environment-friendly,which are widely used as binders and other functional components of energy storage system; marine biomass carbonization materials are rich in pore structure,showing excellent application potential as advanced electrodes;seabed mineral materials are used as electrode materials and template materials in energy storage system.The exploitation of seabed minerals is an important technical guarantee for its future application.The types of new marine materials and their applications in the field of energy storage were summarized,and the combination of marine materials and energy storage was prospected to further promote the sustainable utilization of emerging marine materials.

参考文献

[1] 高春梅, 柳明珠, 吕少瑜, 等. 海藻酸钠水凝胶的制备及其在药物释放中的应用[J]. 化学进展, 2013,25(6):1012-1022.
[2] 段久芳. 天然高分子材料[M]. 武汉: 华中科技大学出版社, 2016.
[3] Guo R N, Zhang S L, Han W Q, et al. Preparation of an amorphous cross-linked binder for silicon anodes[J]. Chemistry Sustainable Energy Materials, 2019,12:4838-4845.
[4] Zhang S N, Wang S J, Meng Y Z, et al. Aqueous sodium alginate as binder:Dramatically improving the performance of dilithium terep-hthalate-based organic lithium ion batteries[J]. Journal of Power Sources, 2019.Doi: 10.1016/j.jpowsour.2019.227007 .
[5] Xu H, Guo S H, Zhou H S, et al. Sodium alginate enabled advanced layered manganese-based cathode for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019,11:26871-26823.
[6] Kuenzel M, Bresser D, Passerini S, et al. Deriving structure-perfor-mance relations of chemically modified chitosan binders for susta-inable high-voltage LiNi0.5Mn1.5O4 cathodes[J]. Batteries & Super-caps, 2020,3:155-164.
[7] Yi H, Lan T, Deng Y H, et al. A robust aqueous-processable polymer binder for long-life high-performance lithium sulfur battery[J]. Energy Storage Materials, 2019,21:61-68.
[8] Lu Y Y, Zhu T Y, Huang K, et al. A semisolid electrolyte for flexi-ble Zn-ion batteries[J]. ACS Applied Energy Materials, 2019(2):904-6910.
[9] Zhang J J, Liu Z H, Cui G L, et al. Renewable and superior ther-mal-resistant cellulose-based composite nonwoven as lithium-ion battery separator[J]. ACS Applied Materials & Interfaces, 2013,5:128-134.
[10] Chen Y, Du P F, Xiong J, et al. Electrospun cellulose polymer nano-fiber membrane with flame resistance properties for lithium-ion batteries[J]. Carbohydrate Polymers, 2020,234.Doi: 10.1016/j.car-bpol.2020.115907.
[11] Fan Y N, Wang T Y, Li Q, et al. Accelerated polysulfide conversion on hierarchical porous vanadium-nitrogen-carbon for advanced lithium-sulfur batteries[J]. Nanoscale, 2020,12(2):584-490.
[12] Wang X J, Song Y, Zhi L J, et al. All-biomaterial supercapacitor derived from bacterial cellulose[J]. Nanoscale, 2016,8.Doi: 10.1039/c6nr01485b.
[13] 宗飞旭, 潘超, 董丽, 等. 海带基微孔/介孔复合多级孔纳米炭的制备及电化学性能研究[J]. 纳米技术, 2017,7(1):11-20.
[14] Li D H, Lai C, Yang D J, et al. From double-helix structured sea-weed to S-doped carbon aerogel with ultra-high surface area for energy storage[J]. Energy Storage Materials, 2019,17:22-30.
[15] Wang J, Zhang P X, Deng S G, et al. Controllable synjournal of bi-functional porous carbon for efficient gas mixture separation and high-performance supercapacitor[J]. Chemical Engineering Journal, 2018,348:57-66.
[16] Kang D M, Liu Q L, Zhang D, et al. “Egg-Box”-assisted fabrica-tion of porous carbon with small mesopores for high-rate electric-double layer capacitors[J]. ACS Nano, 2015,9(11):11225-11233.
[17] Peng L, Liu Y L, Zheng M T, et al. Mixed-biomass wastes derived hierarchically porous carbons for high-performance electrochemi-cal energy storage[J]. ACS Sustainable Chemistry & Engineering, 2019,7:10393-10402.
[18] Shao H Y, Wang F, Huang Y Q, et al. Modified separators coated with a Ca(OH)2-carbon framework derived from crab shells for li-thium-sulfur batteries[J]. Journal of Materials Chemistry A, 2016,4.Doi: 10.1039/C6TA06828F.
[19] Han J M, Xi B J, Xiong S L, et al. High-surface-area nitrogen/pho-sphorus dual-doped hierarchical porous carbon derived from bio-char for sulfur holder[J]. Chemistry Select, 2018,3:10175-10181.
[20] Bin D, Guo Z Y, Xia Y Y, et al. Crab-shell induced synjournal of or-dered macroporous carbon nanof?ber arrays coupled with MnCo2O4 nanoparticles as bifunctional oxygen catalysts for rechargeable Zn-air batteries[J]. Nanoscale, 2017,9.Doi: 10.1039/c7nr03009f.
[21] Guo Z Y, Li C, Xia Y Y, et al. Ruthenium oxide coated ordered mesoporous carbon nanofiber arrays:A highly bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries[J]. Journal of Ma-terials Chemistry A, 2016,4:6282-6289.
[22] Guo Z Y, Wang Y G, Xia Y Y, et al. Synjournal of ruthenium oxide coated ordered mesoporous carbon nanofiber arrays as a catalyst for lithium oxygen battery[J]. Journal of Power Sources, 2015,276:181-188.
[23] Li Z, Ke H Z, Cheng H S, et al. Application of diatomite as an ef-fective polysulfides adsorbent for lithium-sulfur batteries[J]. Jour-nal of Energy Chemistry, 2017,26:1267-1275.
[24] Cheng H, Cai N, Wang M. Facile and scalable synjournal of micro-mesoporous carbon/magnesium oxide/sulfur composite for lithium-sulfur batteries[J]. Solid State Ionics, 2019,337:12-18.
[25] Xu Y, Chen J, Zhong S W, et al. Porous diatomite-mixed 1,4,5,8-NTCDA nanowires as high-performance electrode materials for li-thium-ion batteries[J]. Nanoscale, 2019,11:15881-15891.
[26] 尤金跨, 储炜, 林祖赓, 等. 一种新型锂离子蓄电池阴极材料—锰结核的嵌锂行为[J]. 电源技术, 2001,25(2), 94-97.
[27] 陈洪冶, 曾载淋. 矿床成因类型[M]. 北京: 地质出版社, 2014.
[28] 王帅, 刘庆友. 大块状黄铁矿的高温高压烧结与电化学实验研究[C]// 中国矿物岩石地球化学学会第17届学术年会论文摘要集.杭州:中国矿物岩石地球化学学会, 2019.
[29] Yuvaraj S, Veerasubramani G K, Kim D W, et al. Facile synjournal of FeS2/MoS2 composite intertwined on rGO nanosheets as a high-performance anode material for sodium-ion battery[J]. Journal of Alloys and Compounds, 2020,821.Doi: 10.1016/j.jallcom.2019. 153222.
[30] Zeng J, Wang, X F, Liu, J, et al. Micro-sized FeS2@FeSO4 core-shell composite for advanced lithium storage[J]. Journal of Alloys and Compounds, 2020,814.Doi: 10.1016/j.jallcom.2019.151922.
[31] Li Q C, Sun J Y, Liu Z F, et al. Biotemplating growth of nepenthes-like n doped graphene as a bifunctional polysulfide scavenger for Li-S batteries[J]. ACS Nano, 2018,12:10240-10250.
[32] Chen K, Gao T, Liu Z F, et al. Growing three-dimensional biomor-phic grapheme powders using naturally abundant diatomite tem-plates towards high solution processability[J]. Nature Communica-tions, 2016,7.Doi: 10.1038/ncomms13440.
[33] Li J Q, Zhang J, Liu Z F, et al. Diatomite-templated synjournal of frees-tanding 3D graphdiyne for energy storage and catalysis applica-tion[J]. Advanced Materials, 2018,30.Doi: 10.1002/adma.201800548.
[34] Zhou F, Cui Y, Yu S H, et al. Diatomite derived hierarchical hybrid anode for high performance all-solid-state lithium metal batteri-es[J]. Nature Communications, 2019,10.Doi: 10.1038/s41467-019-10473-w.
文章导航

/