无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
综述与专论

钯基催化剂应用于甲酸电氧化反应的研究进展

  • 陈少峰 ,
  • 侯兰凤 ,
  • 廖世军
展开
  • 1.茂名职业技术学院化学工程系,广东茂名 525000
    2.华南理工大学化学与化工学院
陈少峰(1982— ),男,硕士,副教授,研究方向为纳米催化材料制备及应用;E-mail: cnshaofeng@qq.com

收稿日期: 2020-08-29

  网络出版日期: 2021-05-12

基金资助

国家重点研发计划项目(2017YFB0102900);国家重点研发计划项目(2016YFB0101201);国家自然科学基金项目(21476088);国家自然科学基金项目(21776105);广东省自然科学基金项目(2015B010106012);茂名市科技计划项目(2019472)

Research progress on application of palladium-based catalyst in electrooxidation of formic acid

  • Shaofeng Chen ,
  • Lanfeng Hou ,
  • Shijun Liao
Expand
  • 1. Department of Chemical Engineering,Maoming Polytechnic,Maoming 525000,China
    2. School of Chemistry and Engineering,South China University of Technology

Received date: 2020-08-29

  Online published: 2021-05-12

摘要

甲酸是一种很有前途的化学储氢材料,可作为低温液体燃料电池的直接燃料。钯基催化剂作为直接甲酸燃料电池(DFAFC)阳极材料,对甲酸氧化具有良好的催化活性,能克服一氧化碳的毒化,在甲酸电化学氧化反应中主要按直接途径进行。降低贵金属含量、提高催化活性、提升稳定性是当前钯基催化材料研究领域的主要方向。主要介绍了当前研究中钯催化剂对甲酸电氧化的催化机理,综述了近5 a的钯合金催化剂制备、特殊形貌控制、碳负载对甲酸氧化活性增强的研究,对钯基催化剂的持续开发具有实际应用意义。

本文引用格式

陈少峰 , 侯兰凤 , 廖世军 . 钯基催化剂应用于甲酸电氧化反应的研究进展[J]. 无机盐工业, 2021 , 53(5) : 33 -38 . DOI: 10.11962/1006-4990.2020-0306

Abstract

Formic acid is a promising material for chemical hydrogen storage,which can be used as direct fuel for cryogenic liquid fuel cell.As anode materials for direct formic acid fuel cell(DFAFC),Pd-based catalysts have good catalytic activity for formic acid oxidation,which can overcome the poisoning of CO and carry out via direct route of the electrochemical oxida-tion of formic acid.Reducing noble metal content,improving catalytic activity and stability are the main directions in the re-search field of Pd-based catalytic materials.The electrooxidation and catalytic mechanism of Pd-based catalyst for formic acid at present was mainly introduced.The preparation of Pd alloy catalyst,the control of special morphology and the enhancement of carbon loading on formic acid oxidation activity in recent five years were reviewed.It has practical significance for the continuous development of Pd-based catalyst.

参考文献

[1] Wang R, Liao S, Ji S. High performance Pd-based catalysts for oxi-dation of formic acid[J]. Journal of Power Sources, 2008,180(1):205-208.
[2] Aslam N M, Masdar M S, Kamarudin S K, et al. Overview on direct formic acid fuel cells(DFAFCs) as an energy sources[J]. APCBEE Procedia, 2012,3:33-39.
[3] 方向红, 张寅秋, 王琪, 等. Pd/AC催化剂催化分解甲酸反应条件的研究[J]. 无机盐工业, 2010,42(2):43-45.
[4] Brummer S B, Makrides A C. Adsorption and oxidation of formic acid on smooth platinum electrodes in perchloric acid solutions[J]. The Journal of Physical Chemistry, 1964,68(6):1448-1459.
[5] Ha S, Larsen R, Zhu Y, et al. Direct formic acid fuel cells with 600 mA/cm at 0.4 V and 22 ℃[J]. Fuel Cells, 2004,4(4):337-343.
[6] Rice C, Ha S, Masel R I, et al. Catalysts for direct formic acid fuel cells[J]. Journal of Power Sources, 2003,115(2):229-235.
[7] Cuesta A, Cabello G, Osawa M, et al. Mechanism of the electrocata-lytic oxidation of formic acid on metals[J]. ACS Catalysis, 2012,2(5):728-738.
[8] Joo J, Uchida T, Cuesta A, et al. Importance of acid-base equilibrium in electrocatalytic oxidation of formic acid on platinum[J]. Journal of the American Chemical Society, 2013,135(27):9991-9994.
[9] Chen Y X, Heinen M, Jusys Z, et al. Bridge-bonded formate:Active intermediate or spectator species in formic acid oxidation on a Pt film electrode?[J]. Langmuir, 2006,22(25):10399-10408.
[10] Chen Y X, Heinen M, Jusys Z, et al. Kinetics and mechanism of the electrooxidation of formic acid—Spectroelectrochemical studies in a flow cell[J]. Angewandte Chemie International Edition, 2006,45(6):981-985.
[11] Hammer B, N?rskov J K. Theoretical surface science and cataly-sis—Calculations and concepts[J]. Advances in Catalysis, 2000,45:71-129.
[12] 魏子栋. 质子交换膜燃料电池催化剂性能增强方法研究进展[J]. 化工进展, 2016,35(9):2629-2639.
[13] Xu S. The electrooxidation of formic acid catalyzed by Pd-Ga nano-alloys[J]. Catalysis Science & Technology, 2019,9(5):1255-1259.
[14] Ulas B, Caglar A, Sahin O, et al. Composition dependent activity of PdAgNi alloy catalysts for formic acid electrooxidation[J]. Journal of Colloid and Interface Science, 2018,532:47-57.
[15] Zhang R, Yang M, Peng M, et al. Understanding the role of Pd:Cu ratio,surface and electronic structures in Pd-Cu alloy material applied in direct formic acid fuel cells[J]. Applied Surface Sci-ence, 2019,465:730-739.
[16] Wang H, Li Y, Li C, et al. Hyperbranched PdRu nanospine assem-blies:An efficient electrocatalyst for formic acid oxidation[J]. Jo-urnal of Materials Chemistry A, 2018,36(6):17514-17518.
[17] Kang X, Miao K, Guo Z, et al. PdRu alloy nanoparticles of solid so-lution in atomic scale:Size effects on electronic structure and ca-talytic activity towards electrooxidation of formic acid and meth-anol[J]. Journal of catalysis, 2018,364:18-191.
[18] Zhang X, Fan H, Zheng J, et al. Pd-Zn nanocrystals for highly effi-cient formic acid oxidation[J]. Catalysis Science & Technology, 2018,18(8):4757-4765.
[19] Gong Y, Liu X, Gong Y, et al. Synjournal of defect-rich palladium-tin alloy nanochain networks for formic acid oxidation[J]. Journal of Colloid and Interface Science, 2018,530:189-195.
[20] Wang S, Chang J, Xue H, et al. Catalytic stability study of a Pd-Ni2P/C catalyst for formic acid electrooxidation[J]. Chem.Electro.Chem., 2017,4(5):1243-1249.
[21] Ma Y, Li T, Chen H, et al. A general strategy to the synjournal of car-bon-supported PdM(M=Co,Fe and Ni) nanodendrites as high-performance electrocatalysts for formic acid oxidation[J]. Journal of Energy Chemistry, 2017,26(6):1238-1244.
[22] Zhang L Y, Liu Z. Graphene decorated with Pd4Ir nanocrystals:Ul-trasound-assisted synjournal,and application as a catalyst for oxidation of formic acid[J]. Journal of Colloid and Interface Science, 2017,505:783-788.
[23] 何利华, 汪广进, 龚春丽, 等. 特殊形貌Pd纳米材料的控制合成及应用研究进展[J]. 材料导报, 2018(S2):44-49,68.
[24] Bin D, Yang B, Ren F, et al. Facile synjournal of PdNi nanowire ne-tworks supported on reduced graphene oxide with enhanced cat-alytic performance for formic acid oxidation[J]. Journal of Materials Chemistry A, 2015,26(3):14001-14006.
[25] Zheng J N, Zhang M, Li F F, et al. Facile synjournal of Pd nanoch-ains with enhanced electrocatalytic performance for formic acid oxidation[J]. Electrochimica Acta, 2014,130:446-452.
[26] Zhang L Y, Gong Y, Wu D, et al. Twisted palladium-copper nano-chains toward efficient electrocatalytic oxidation of formic acid[J]. Journal of Colloid and Interface Science, 2019,537:366-374.
[27] Ortiz-Ortega E, Carrera-Cerritos R, Arjona N, et al. Pd Nanostruc-tures with high tolerance to CO poisoning in the formic acid elec-trooxidation reaction[J]. Procedia Chemistry, 2014,12:9-18.
[28] Xi Z, Erdosy D P, Mendoza-Garcia A, et al. Pd Nanoparticles cou-pled to WO2.72 nanorods for enhanced electrochemical oxidation of formic acid[J]. Nano Letters, 2017,17(4):2727-2731.
[29] Yang F, Zhang Y, Liu P F, et al. Pd-Cu alloy with hierarchical ne-twork structure as enhanced electrocatalysts for formic acid oxidation[J]. International Journal of Hydrogen Energy, 2016,41(16):6773-6780.
[30] Zhang L Y, Gong Y, Wu D, et al. Palladium-cobalt nanodots ancho-red on graphene:In-situ synjournal,and application as an anode catalyst for direct formic acid fuel cells[J]. Applied Surface Sci-ence, 2019,469:305-311.
[31] Xu H, Zhang K, Yan B, et al. Ultra-uniform PdBi nanodots with high activity towards formic acid oxidation[J]. Journal of Power Sources, 2017,356:27-35.
[32] Ma T, Li C, Liu T, et al. Size-controllable synjournal of dendritic Pd nanocrystals as improved electrocatalysts for formic acid fuel cells′ application[J]. Journal of Saudi Chemical Society, 2018,22(7):846-854.
[33] Wang H H, Zhang J F, Chen Z L, et al. Size-controllable synjournal and high-performance formic acid oxidation of polycrystalline Pd nanoparticles[J]. Rare Metals, 2019,38(2):115-121.
[34] Liu X, Li Z, Wang K, et al. Facile synjournal of Pd nanocubes with assistant of iodide and investigation of their electrocatalytic perf-ormances towards formic acid oxidation[J]. Nanomaterials, 2019,9(3):375.
[35] Yazdan-Abad M Z, Noroozifar M, Alfi N. Investigation on the elec-trocatalytic activity and stability of three-dimensional and two-di-mensional palladium nanostructures for ethanol and formic acid oxidation[J]. Journal of Colloid and Interface Science, 2018,532:485-490.
[36] Qiu X, Zhang H, Wu P, et al. One-pot synjournal of freestanding po-rous palladium nanosheets as highly efficient electrocatalysts for formic acid oxidation[J]. Advanced Functional Materials, 2017,27(1).Doi: 10.1002/adfm.201603852.
[37] Cazares-ávila E, Ruiz-Ruiz E J, Hernández-Ramírez A, et al. Ef-fect of OMC and MWNTC support on mass activity of PdCo cata-lyst for formic acid electro-oxidation[J]. International Journal of Hydrogen Energy, 2017,42(51):30349-30358.
[38] Mazurkiewicz-Pawlicka M, Malolepszy A, Mikolajczuk-Zychora A, et al. A simple method for enhancing the catalytic activity of Pd deposited on carbon nanotubes used in direct formic acid fuel cells[J]. Applied Surface Science, 2019,476:806-814.
[39] Lu H T, Yang Z J, Yang X, et al. CeO2 Nanotubes supported Pd elec-trocatalysts for formic acid oxidation[J]. Electrocatalysis, 2015,6(3):255-262.
[40] Ali H, Kanodarwala F K, Majeed I, et al. La2O3 Promoted Pd/rGO electro-catalysts for formic acid oxidation[J]. ACS Applied Materi-als & Interfaces, 2016,8(47):32581-32590.
[41] Kankla P, Limtrakul J, Green M L H, et al. Electrooxidation of for-mic acid enhanced by surfactant-free palladium nanocubes on sur-face modified graphene catalyst[J]. Applied Surface Science, 2019,471:176-184.
[42] 吕美英, 李文鹏, 刘慧玲, 等. 利用石墨烯-炭黑组成的二元碳载体增强甲酸在钯催化剂上电化学氧化的活性[J]. 催化学报, 2017,38(5):939-947.
[43] Ko Y J, Kim J Y, Lee K S, et al. Palladium nanoparticles from sur-factant/fast-reduction combination one-pot synjournal for the liquid fuel cell applications[J]. International Journal of Hydrogen Ener-gy, 2018,43(41):19029-19037.
[44] Gong Y, He N, Qin C, et al. Nitrogen-doped carbon-modified tita-nium oxides supported Pd catalyst for the electrooxidation of for-mic acid[J]. Journal of Solid State Electrochemistry, 2018,22(8):2623-2628.
[45] Xu H, Yan B, Zhang K, et al. N-doped graphene-supported binary PdBi networks for formic acid oxidation[J]. Applied Surface Sci-ence, 2017,416:191-199.
文章导航

/