新能源汽车电池负极材料的制备与性能研究
收稿日期: 2020-09-28
网络出版日期: 2021-03-11
基金资助
湖北省自然科学基金项目(2018CFB192)
Study on preparation and performance of negative electrode materials for batteries of new energy vehicles
Received date: 2020-09-28
Online published: 2021-03-11
采用原位合成法制备了镍-氧化镍/多孔碳纳米片(Ni-NiO/PCNs)负极材料,对比分析了氯化钠模板、退火温度和退火时间对负极材料物相组成、显微形貌和电化学性能的影响。结果表明,Ni/PCNs、Ni-NiO/C和Ni-NiO/PCNs负极材料都主要含有镍和无定型C相,且后2种负极材料还含有氧化镍相;300 ℃/4 h为Ni-NiO/PCNs负极材料适宜的退火工艺,此时Ni-NiO/PCNs负极材料中Ni-NiO粒子分散性较好且保持着三维片层结构,平均尺寸约为27 nm,Ni-NiO实现了对无定型C的包裹;退火时间过长(6 h)会使得镍粒子过氧化且发生团聚,而温度过高(400 ℃)会使得粒子以团聚为主,三维片层状结构消失。电流密度为1 A/g、循环5 000圈后Ni-NiO/PCNs负极材料的放电比容量为235 mA·h/g,此时的放电比容量约为首圈放电比容量的83.93%;Ni-NiO/C和Ni/PCNs负极材料在充放电循环过程中以及循环5 000圈后的放电比容量和容量保持率都明显低于Ni-NiO/PCNs负极材料,Ni-NiO/PCNs负极材料具有更好的循环稳定性,这主要与其具有独特的多孔三维片层结构有关。
包科杰 , 路凌然 . 新能源汽车电池负极材料的制备与性能研究[J]. 无机盐工业, 2021 , 53(3) : 54 -59 . DOI: 10.11962/1006-4990.2020-0229
The Ni-NiO/PCNs negative electrode materials were prepared by insitu synthesis.The effects of NaCl template,annealing temperature and annealing time on the phase composition,microstructure and electrochemical properties of the negative electrode materials were investigated.It was demonstrated that Ni/PCNs,Ni-NiO/C and Ni-NiO/PCNs anode materials mainly contain Ni and amorphous C while the last two anode materials also contain NiO phase.The appropriate annealing process for Ni-NiO/PCNs anode materials is at 300 ℃ for 4 h.Ni-NiO particles in Ni-NiO/PCNs anode materials have good dispersion and maintain three-dimensional lamellar structure with average size of 27 nm and Ni-NiO re-alizes the encapsulation of amorphous C.However,too long annealing time(6 h) will lead to the over oxidation and agglomer-ation of Ni particles,while too high temperature(400 ℃) will lead to the agglomeration of particles and the disappearance of three-dimensional lamellar structure.The discharge capacity of Ni-NiO/PCNs negative electrode material is 235 mA·h/g after 5 000 cycles with current density of 1 A/g which remains 83.93% of the first cycle.The discharge capacity and capacity reten-tion rate of Ni-NiO/C and Ni/PCNs negative electrode materials are significantly lower than that of Ni-NiO/PCNs negative electrode materials after 5 000 cycles.Ni-NiO/PCNs negative electrode materials have better cycle stability,which is mainly related to their unique three-dimensional lamellar structure.
[1] | 赵立敏, 王惠亚, 解启飞, 等. 车用动力锂离子电池纳米硅/碳负极材料的制备技术与发展[J]. 材料导报, 2020,34(7):7026-7035. |
[2] | 申晨, 王怀国. 我国锂离子电池产业技术发展概况[J]. 新材料产业, 2019(9):15-21. |
[3] | 张惠泽. 新能源汽车动力电池研究现状[J]. 通信电源技术, 2018,35(7):273-274. |
[4] | 朱子翼, 董鹏, 张举峰, 等. 新一代储能钠离子电池正极材料的改性研究进展[J]. 化工进展, 2020,39(3):1043-1056. |
[5] | 梁丽萍. 基于高温煅烧法的新能源汽车电池负极材料的制备与性能优化研究[J]. 冶金管理, 2019(17):45-46. |
[6] | 张雨薇, 刘成龙, 徐志江. 新能源汽车钠离子电池富锂锰基正极材料掺杂改性[J]. 电源技术, 2019,43(10):1596-1600. |
[7] | 郑世界, 陈翀, 陆琴. 新能源汽车电池负极材料的制备与性能研究[J]. 铸造技术, 2018,39(11):2473-2476. |
[8] | 陈跃, 郑成博. 循环后负极材料对汽车动力电池性能的影响[J]. 电源技术, 2018,42(9):1278-1280. |
[9] | Zhang D M, Jia J H, Yang C C, et al. Fe7Se8 nanoparticles anchored on N-doped carbon nanofibers as high-rate anode for sodium-ion batteries[J]. Energy Storage Materials, 2020,24:439-449. |
[10] | 李通, 史云斌, 刘庆彬, 等. 硒掺杂改性新能源汽车钠离子电池正极材料的结构与电化学性能[J]. 无机盐工业, 2020,52(2):17-22. |
[11] | Liang D, Gang S, Kokswee G, et al. Facile one-step carbothermal reduction synjournal of Na3V2(PO4)2F3/C serving as cathode for so-dium ion batteries[J]. Electrochimica Acta, 2019,298:459-467. |
[12] | Liang J, Yuan C, Li H, et al. Growth of SnO2 nanoflowers on N-do-ped carbon nanofibers as anode for Li- and Na-ion batteries[J]. Nano-Micro Letters, 2018,10(2):21-23. |
[13] | 孙硕, 谢天欢, 张敬远, 等. 磷化铜/石墨烯锂离子负极材料的制备及其电化学性能研究[J]. 常熟理工学院学报, 2020,34(2):11-14. |
[14] | Zhang L, Hu X, Chen C, et al. In operando mechanism analysis on nanocrystalline silicon anode material for reversible and ultrafast sodium storage[J]. Advanced Materials, 2017,29(5):1-8. |
[15] | 黄艳婷, 镇顺英, 李爱菊. Kapton基多微孔碳作为钠离子电池负极材料[J]. 电源技术, 2019,43(11):1825-1827. |
[16] | 吴瑞峰, 王宏伟, 皮晓媛. 二硫化钼复合导电碳作为高性能钠离子电池负极材料的研究[J]. 无机盐工业, 2019,51(7):28-32. |
[17] | Khan M A, Han D W, Gihyeok L, et al. P2/O3 phase-integrated Na0.7MnO2 cathode materials for sodium-ion rechargeable batteri-es[J]. Journal of Alloys and Compounds, 2019,771:987-993. |
[18] | Chakraborti H. Assessment of amine functionalized graphene nano-flakes for anode materials in Li-ion batteries:an ab initio study[J]. Chemical Physics Letters, 2014,600(4):118-122. |
[19] | Xiao Y, Zhu Y F, Yao H R, et al. A stable layered oxide cathode material for high-performance sodium-ion battery[J]. Advanced Energy Materials, 2019,9(19):1-8. |
[20] | Hsieh A G, Bhadra S, Hertzberg B J, et al. Electrochemical-acoustic time of flight:in operando correlation of physical dynamics with battery charge and health[J]. Energy & Environmental Science, 2015,8(5):1569-1577. |
[21] | Gao H, Ma W, Yang W, et al. Sodium storage mechanisms of bismuth in sodium ion batteries:An operando X-ray diffraction study[J]. Journal of Power Sources, 2018,379:1-9. |
/
〈 |
|
〉 |